

Improving Generalization and Robustness in SNNs Through Signed Rate Encoding and Sparse Encoding Attacks

(5) $\mathbf{z} + \boldsymbol{\delta}^* = (0, 1)$

Bhaskar Mukhoty, Hilal AlQuabeh, Bin Gu

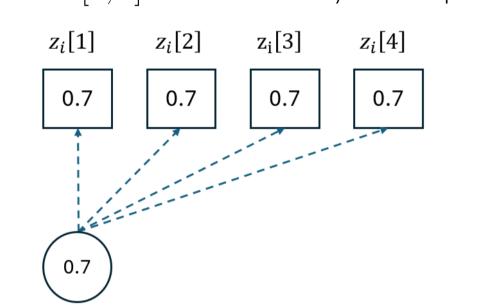
A Spiking Neuron

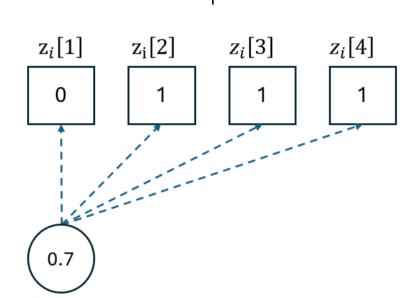
- The neuron cell membrane accumulates the input spikes over time and sends the output spike whenever the potential exceeds a predetermined threshold.
- A reset follows the spiking activity in the membrane potential. The Heaviside function abstracts a spike $s_i^{(l)}[t]$, in the i-th neuron at l-th layer at time-step t.

$$\begin{split} u_i^{(l)}[t] &= \beta(u_i^{(l)}[t-1] - s_i^{(l)}[t-1]u_{th}) + \sum_j w_{ij} s_j^{(l-1)}[t], \\ s_i^{(l)}[t] &= H(u_i^{(l)}[t] - u_{th}) = \begin{cases} 1 & \text{if } u_i^{(l)}[t] > u_{th} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Input Encoding: Constant (a.k.a. direct) vs. Rate

- An SNN takes input over T time steps. The constant encoding replicates the input for T times.
- In rate, input $x \in [0,1]$ is encoded by T independent Bernoulli samples.





- Rate-encoded SNNs are more robust to adversarial perturbation than constant-encoded SNNs, while the latter offers higher clean accuracy.
- Since randomness in rate encoding introduces the accuracy-robustness tradeoff, we intend to reduce the randomness in rate encoding.

Adversarial Attack

- Given an input \mathbf{x} , an untargeted adversarial attack finds a perturbation $\boldsymbol{\delta}$, such that the classifier output is altered, i.e., $h(\mathbf{x}) \neq h(\mathbf{x} + \boldsymbol{\delta})$. Maximizing the loss over the input perturbations: $\max_{\|\boldsymbol{\delta}\| < \epsilon} \mathcal{L}(h_{\theta}(\mathbf{x} + \boldsymbol{\delta}), y)$ can give us such perturbations.
- As perturbation in the input must pass through the encoding space, attack in the encoding spaces is supposed to be stronger. We explore sparse adversarial attack in the encoding space $\mathbf{z} \in \{0,1\}^{d \times T}$, instead of the input space $\mathbf{x} \in \{0,1\}^d$.

Contributions

- We proposed Signed Rate Encoding, which effectively reduces randomness introduced by Rate Encoding and helps improve clean accuracy.
- We introduce Sparse Encoding Attack (SEA) that performs a sparse adversarial attack on encoding space that jointly optimizes domain and sparsity constraints. We establish theoretical connections with input space attacks to compare the budgets.
- Adversarial training with SEA improves the robustness of the rate-encoded SNNs. The
 empirical results reveal that SEA under signed rate encoding offers significantly higher
 robust accuracy than the existing methods.

Signed Rate Encoding

Allows input $x_i \in [-1, 1]$ and generates Signed Bernoulli spike according to the sign of the input.

$$z_i = \operatorname{sBer}(x_i) := \begin{cases} \operatorname{Ber}(x_i) & \text{if } x_i \ge 0 \\ -\operatorname{Ber}(-x_i) & \text{if } x_i < 0 \end{cases}$$
 (1)

so that, $z_i \in \{-1, 0, 1\}$, with,

$$\mathbb{P}(z_i = 1) = x_i \mathbb{I}[x_i \ge 0] = x_i^+, \qquad \mathbb{P}(z_i = -1) = -x_i \mathbb{I}[x_i < 0] = x_i^-
\mathbb{P}(z_i = 0) = 1 - x_i^+ - x_i^- = 1 - |x_i|$$
(2)

Reduction in Randomness

An input image $\mathbf{x} \in [0,1]^d$, **Bernoulli** encoded twice independently at a particular time step, i.e., $\mathbf{z}, \hat{\mathbf{z}} \sim Ber(\mathbf{x})$, where, $\mathbf{z}, \hat{\mathbf{z}} \in \{0,1\}^d$, we have,

$$\mathbb{E}_{\mathbf{z},\hat{\mathbf{z}}}[\|\mathbf{z} - \hat{\mathbf{z}}\|_{0}] = \sum_{i=1}^{d} \mathbb{E}_{z_{i},\hat{z}_{i} \sim Ber(x_{i})}[|z_{i} - \hat{z}_{i}|] = 2\sum_{i=1}^{d} x_{i}(1 - x_{i}) = 2\langle \mathbf{x}, 1 - \mathbf{x} \rangle =: k_{1}(\mathbf{x})$$
(3)

In contrast, input $\mathbf{x} \in [-1, 1]^d$, **Signed Bernoulli** encoded twice independently $\mathbf{z}, \hat{\mathbf{z}} \sim \mathrm{sBer}(\mathbf{x})$, with, $\mathbf{z}, \hat{\mathbf{z}} \in \{-1, 0, 1\}^d$, we have,

$$\mathbb{E}_{\mathbf{z},\hat{\mathbf{z}}\sim sBer(\mathbf{x})}[\|\mathbf{z} - \hat{\mathbf{z}}\|_{0}] = \sum_{i=1}^{d} \mathbb{E}_{z_{i},\hat{z}_{i}\sim sBer(x_{i})}[\|z_{i} - \hat{z}_{i}\|_{0}] = \sum_{i=1}^{d} \mathbb{P}(z_{i} \neq \hat{z}_{i}) = \sum_{i=1}^{d} (1 - \mathbb{P}(z_{i} = \hat{z}_{i}))$$

$$= \sum_{i=1}^{d} (1 - \mathbb{P}(z_{i} = 1, \hat{z}_{i} = 1) - \mathbb{P}(z_{i} = -1, \hat{z}_{i} = -1) - \mathbb{P}(z_{i} = 0, \hat{z}_{i} = 0))$$

$$= \sum_{i=1}^{d} \left(1 - (x_{i}^{+})^{2} - (x_{i}^{-})^{2} - (1 - |x_{i}|)^{2}\right) = 2\langle |\mathbf{x}|, \mathbf{1} - |\mathbf{x}| \rangle =: k_{2}(\mathbf{x})$$

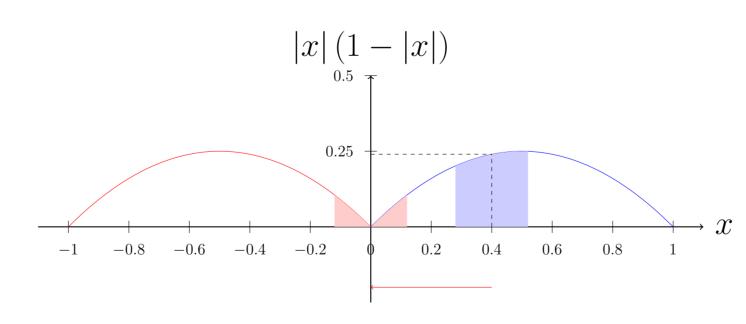


Figure 1. Signed Bernoulli reducing randomness after mean-centering of CIFAR-10 dataset.

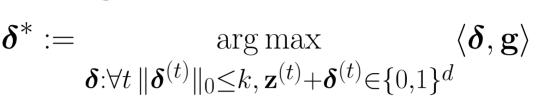
Let $\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \in [0,1]^d$, we compute the factor $k_3(\mathbf{x}) = \frac{k_1(\mathbf{x})}{k_2(\mathbf{x}-\boldsymbol{\mu})}$, representing the factor by which the randomness reduces by mean centering of a particular input \mathbf{x} .

	CIFAR-10	CIFAR-100	SVHN	ImageNet-10
\overline{d}	$32 \times 32 \times 3$	$32 \times 32 \times 3$	$32 \times 32 \times 3$	$224 \times 224 \times 3$
Avg. $k_1(\mathbf{x})$	994.18	953.09	1106.59	54701.22
Avg. $k_2(\mathbf{x} - \mu)$	942.39	964.14	830.33	43998.53
Avg. $k_3(\mathbf{x})$	1.11	1.05	1.44	1.366

Table 1. Randomness reduction factor (k_3) due to signed rate encoding averaged over training data points.

Sparse Encoding Attacks

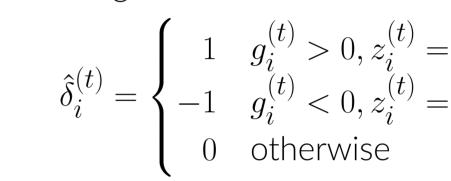
With gradient $\mathbf{g} := \nabla_{\mathbf{z}} \mathcal{L}(h_{\theta}(\mathbf{z} + \boldsymbol{\delta}), y) \in \mathbb{R}^{d \times T}$, and $\boldsymbol{\delta} = [\boldsymbol{\delta}^{(1)}, \boldsymbol{\delta}^{(2)}, \dots, \boldsymbol{\delta}^{(T)}]$, we perform untargeted l_0 adversarial attack on the rate encoding $\mathbf{z} \in \{0,1\}^{d \times T}$, where at most k coordinates can change in each frame:

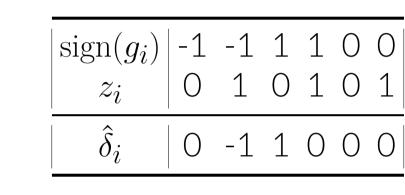


The restriction $\mathbf{z}^{(t)} + \boldsymbol{\delta}^{(t)} \in \{0,1\}^d$ implies $\boldsymbol{\delta}^{(t)} \in \{-1,0,1\}^d$. We first solve the problem without the sparsity constraint:

$$\hat{\boldsymbol{\delta}} := \underset{\boldsymbol{\delta}: \forall t \, \mathbf{z}^{(t)} + \boldsymbol{\delta}^{(t)} \in \{0, 1\}^d}{\operatorname{arg max}} \langle \boldsymbol{\delta}, \mathbf{g} \rangle \tag{6}$$

where, the solution can be given as:





 $abla \mathcal{L}(\mathbf{z})$

(1,0)

Solution for Eqn. (5) can be found by choosing the top k no-zero coordinates of $\hat{\delta}^{(t)}$, according to the magnitude $\hat{\delta}_i^{(t)}g_i^{(t)}$. Similar results can be obtained for Signed Rate Encoding.

Empirical Evaluation

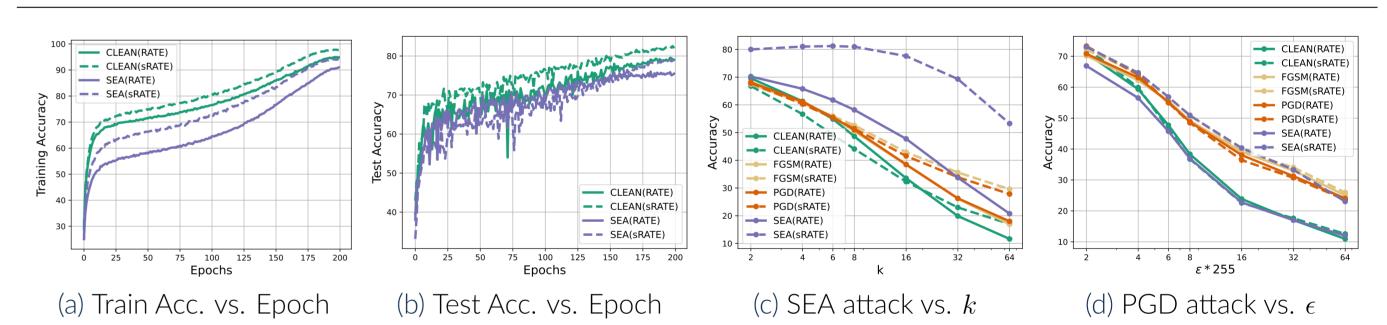


Figure 2. Comparison of training and test accuracies and sensitivity of attack strength for SEA and PGD.

T=4	CIFAR-10, Rate Encoding				CIFAR-10, Signed Rate Encoding					
Attack	Clean	GN	FGSM	PGD	SEA	Clean	GN	FGSM	PGD	SEA
clean	78.79	78.87	75.54	77.07	75.3	82.05	82.01	78.51	79.78	79.06
gn	79.23	78.58	75.92	77.51	75.12	82.13	81.83	78.26	79.7	78.01
fgsm	44.83	44.35	53.93	53.16	42.31	44.3	43.59	55.1	53.81	56.58
pgd	38.87	38.41	49.68	48.83	37.19	36.88	37.03	50.21	48.47	51.87
sea, k=10	44.31	43.89	47.37	46.94	55.33	39.61	39.94	49.05	48.07	80.18
sea, k=20	28.74	28.15	34.67	34.52	43.16	29.06	29.23	40.36	38.75	75.77
Avg	52.46	52.04	56.19	56.34	54.74	52.34	52.27	58.58	58.10	70.25
T=4	SVHN, Rate Encoding				SVHN, Signed Rate Encoding					
clean	85.66	85.84	85.87	86.04	85.01	89.44	89.59	89.64	89.87	83.98
gn	85.44	85.73	85.97	85.65	85.01	89.14	89.38	89.44	89.53	81.93
fgsm	44.09	44.15	50.26	48.33	41.94	43.37	44.06	49.94	48.23	67.57
pgd	38.82	38.77	45.03	43.31	35.82	35.46	35.43	42.45	40.53	65.76
sea, k=10	37.81	37.61	38.13	37.89	54.06	34.62	35.10	35.26	35.13	92.27
sea, k=20	21.46	21.75	22.36	22.63	32.66	23.55	23.72	24.93	24.97	87.21
Avg	52.21	52.31	54.60	53.98	55.75	52.60	52.88	55.28	54.71	79.79

Table 2. A comparison of adversarially trained models (in columns) and attacks (in rows). Adv. training with SEA attack under sRate, offers superior robust accuracy across all attacks.