Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics

TL;DR: Scalable Diffusion Sampler with the usage of Reinforcement Learning & unbiased sampling on Ising Models.

Sebastian Sanokowski¹, Wilhelm Berghammer ¹, Martin Ennemoser ¹, Haoyu Peter Wang ², Sepp Hochreiter^{1,3}, Sebastian Lehner¹

¹ ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz

1. CONTRIBUTIONS

- 1. Principled framework based on the Policy Gradient theorem and Neural Importance Sampling yield memory efficient diffusion samplers
- 2. Framework to leverage diffusion samplers in Self-Normalized Importance Sampling and Neural MCMC
- 3. State-of-the-art results on Combinatorial Optimization problems and in unbiased sampling on Ising models at criticality

2. PROBLEM DESCRIPTION

Learn to generate samples $X \in \{0,1\}^N$ according to the target distribution at a given inverse temperature β :

$$p_B(X, \beta) = \frac{\exp(-\beta H(X))}{\mathcal{Z}}$$

where $\mathcal{Z} = \sum_X \exp(-\beta H(X))$

only the energy function H(X) is available and there are no samples form $p_B(X,\beta)$!

Alpha Divergences:

$$D_{\alpha}(p_B(X)||q_{\theta}(X)) = -\frac{\int p_B(X)^{\alpha} q_{\theta}(X)^{1-\alpha} dX}{\alpha (1-\alpha)}$$

 $\alpha \geq 1$ mass-covering, $\alpha \rightarrow 1: D_{KL}(p_B || q_\theta)$ (fKL) $\alpha \leq 0$ mode seeking, $\alpha \rightarrow 0: D_{KL}(q_\theta || p_B)$ (rKL)

Optimization with Diffusion Models:

Data Processing Inequality for α -Divergences.

$$D_{\alpha}(q_{\theta}(X_0) || p(X_0)) \le D_{\alpha}(q_{\theta}(X_{0:T}) || p(X_{0:T}))$$

This is a tractable upper-bound that serves as the loss.

rKL-based objective in previous discrete diffusion samplers:

$$D_{KL}(q_{\theta}(X_{0:T}) || p(X_{0:T})) = -\sum_{t=1}^{T} \mathbb{E}_{X_{T:t} \sim q_{\theta}(X_{T:t})} \left[S(q_{\theta}(X_{t-1}|X_{t})) \right]$$
$$-\sum_{t=1}^{T} \mathbb{E}_{X_{T:t-1} \sim q_{\theta}(X_{T:t-1})} \left[\log p(X_{t}|X_{t-1}) \right]$$
$$+\beta \mathbb{E}_{X_{T:0} \sim q_{\theta}(X_{T:0})} \left[H_{Q}(X_{0}) \right] + C$$

Problem:

Memory scales $\mathcal{O}(T)$ during training

→ method does not scale to many diffusion steps

Scalable rKL-based Objective:

rKL can alternatively be minimized using Reinforcement Learning methods:

$$L(\theta) = D_{\text{KL}}(q_{\theta}(X_{0:T}) || p(X_{0:T}))$$

Policy Gradient Theorem

$$\nabla_{\theta} L(\theta) = - \underset{X_{t} \sim d^{\theta}(\mathcal{X}, t), X_{t-1} \sim q_{\theta}}{\mathbb{E}} \left[Q^{\theta}(X_{t-1}, X_{t}) \nabla_{\theta} \log q_{\theta}(X_{t-1} | X_{t}) \right],$$

$$R(X_{t}, X_{t-1}) := \begin{cases} \mathcal{T} \left[\log \frac{p(X_{t} | X_{t-1})}{q_{\theta}(X_{t-1} | X_{t})} \right] & \text{if } t > 1 \\ \mathcal{T} \left[\log \frac{p(X_{t} | X_{t-1})}{q_{\theta}(X_{t-1} | X_{t})} \right] - H(X_{t-1}) & \text{else} \end{cases}$$

Forward Process
$$p(X_{0:T})$$
 $p_B(X_0)$ X_T $p(X_T|X_{T-1})$ $X_{T/2}$ $p(X_1|X_0)$ X_0 ... $q_{\theta}(X_{T-1}|X_T)$ $q_{\theta}(X_0|X_1)$ $q_{\theta}(X_0)$

3. METHODS

How to remove the bias between q_{θ} and p_{B} ?

Use Neural Importance Sampling (NIS) for unbiased estimation of observables $\langle O(X) \rangle$ Exact Likelihood Model:

$$\langle O(X_0) \rangle_{p_B(X_0)} \approx \sum_{i=1}^{M} [w(X_0^i) O(X_0^i)]$$

where $w(X_0^i) = \frac{\widehat{w}(X_0^i)}{\sum_{j=1}^M \widehat{w}(X_0^j)}$ and $X_0^i \sim q_{\theta}(X_0^i)$ with $\widehat{w}(X_0^i) = \frac{\widehat{p}(X_0^i)}{q_{\theta}(X_0^i)}$.

Approximate Likelihood Model:

$$\langle O(X_0) \rangle_{p_B(X_0)} \approx \sum_{i=1}^{M} [w(X_{0:T}^i) O(X_0^i)]$$

where $w(X_{0:T}^i) = \frac{\widehat{w}(X_{0:T}^i)}{\sum_{j=1}^M \widehat{w}(X_{0:T}^j)}$ and $X_{0:T}^i \sim q_{\theta}(X_{0:T}^i)$ with $\widehat{w}(X_{0:T}^i) = \frac{\widehat{p}(X_{0:T}^i)}{q_{\theta}(X_{0:T}^i)}$.

Scalable fKL-based Objective:

$$L(\theta) = D_{\text{KL}}(p(X_{0:T}) || q_{\theta}(X_{0:T}))$$

NIS and MC over diffusion time

$$\nabla_{\theta} L(\theta) = -T \sum_{i=1}^{M} \mathbb{E}_{t \sim U\{1,...,T\}} \left[w(X_{0:T}^{i}) \nabla_{\theta} \log q_{\theta}(X_{t-1}^{i} | X_{t}^{i}) \right],$$

where $w(X_{0:T}^i) = \frac{\widehat{w}(X_{0:T}^i)}{\sum_{j=1}^{M} \widehat{w}(X_{0:T}^j)}$ with $\widehat{w}(X_{0:T}^i) = \frac{\widehat{p}(X_{0:T}^i)}{q_{\theta}(X_{0:T}^i)}$, $X_{0:T}^i \sim q_{\theta}(X_{0:T})$, and $U\{1,...,T\}$ is the uniform distribution over the set $\{1,...,T\}$.

Experiments:

- 1. Experiments on popular benchmarks in **Unsupervised Combinatorial Optimization**
- 2. Experiments in unbiased sampling on the **Ising Model** and on **Spin Lattices**

Results:

- 1. SDDS outperforms previous diffusion based samplers on UCO benchmarks and in unbiased sampling
- 2. fKL-based objective works better than rKL-based objective in unbiased sampling, rKL works better in UCO

² Department of Electrical & Computer Engineering, Georgia Institute of Technology ³ NXAI