

Marcus Klasson Aalto University

Arno Solin Aalto University

Martin Trapp
Aalto University

International Conference on Learning Representations

Why Bayesian Deep Learning?

Deep learning is great, but it is not reliable:

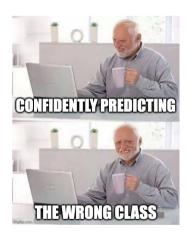
- ► Sensitive to perturbations
- Don't know when they don't know
- Overconfident predictions

← □ →

Why Bayesian Deep Learning?

Deep learning is great, but it is not reliable:

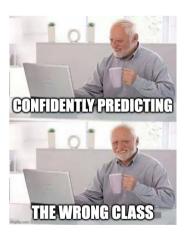
- ► Sensitive to perturbations
- ► Don't know when they don't know
- ► Overconfident predictions



Why Bayesian Deep Learning?

Deep learning is great, but it is not reliable:

- ► Sensitive to perturbations
- ► Don't know when they don't know
- ► Overconfident predictions
- Bayesian deep learning aims to solve this.



 □ ▶

- 1. Specify the prior: $p(\theta)$
- 2. Infer the posterior: $p(\theta \mid \mathcal{D})$
- 3. Make the prediction:

$$p(\mathbf{y}^* \mid \mathbf{x}^*) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \theta) \, p(\theta \mid \mathcal{D}) \, \mathrm{d}\theta$$

∢ □ ▶

- 1. Specify the prior: $p(\theta) = \mathcal{N}(\mathbf{m}_0, \mathbf{S}_0)$
- 2. Infer the posterior: $p(\theta \mid \mathcal{D}) \approx \mathcal{N}(\mathbf{m}, \mathbf{S})$
- 3. Make the prediction:

$$p(\mathbf{y}^* \mid \mathbf{x}^*) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \theta) \, p(\theta \mid \mathcal{D}) \, \mathrm{d}\theta$$

∢ □ ▶

- 1. Specify the prior: $p(\theta) = \mathcal{N}(\mathbf{m}_0, \mathbf{S}_0)$
- 2. Infer the posterior: $p(\theta \mid \mathcal{D}) \approx \mathcal{N}(\mathbf{m}, \mathbf{S})$
- 3. Make the prediction:

$$p(\mathbf{y}^* \mid \mathbf{x}^*) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \theta) \, p(\theta \mid \mathcal{D}) \, d\theta$$

$$\approx \frac{1}{S} \underbrace{\sum_{s=1}^{S} p(\mathbf{y}^* \mid \mathbf{x}^*, \theta^{(s)})}_{\text{(Challenge 2)}}, \quad \underbrace{\theta^{(s)} \sim p(\theta \mid \mathcal{D})}_{\text{(Challenge 1)}}$$

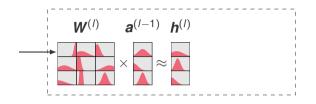
 $\leftarrow \Box \rightarrow$

- 1. Specify the prior: $p(\theta) = \mathcal{N}(\mathbf{m}_0, \mathbf{S}_0)$
- 2. Infer the posterior: $p(\theta \mid \mathcal{D}) \approx \mathcal{N}(\mathbf{m}, \mathbf{S})$
- 3. Make the prediction:

$$p(\mathbf{y}^* \mid \mathbf{x}^*) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \theta) p(\theta \mid \mathcal{D}) d\theta$$

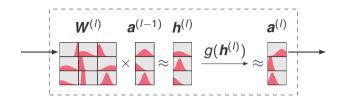
$$\approx \frac{1}{S} \sum_{s=1}^{S} p(\mathbf{y}^* \mid \mathbf{x}^*, \theta^{(s)}), \quad \theta^{(s)} \sim p(\theta \mid \mathcal{D})$$

We approximate it with a Gaussian



$$\mathbf{h}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$
 approximate as Gaussian

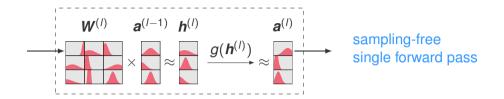
 □ ▶



$$\mathbf{h}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$
 approximate as Gaussian

$$\mathbf{a}^{(l)} = \mathbf{g}(\mathbf{h}^{(l)})$$
 first order Taylor expansion

< □ ▶



$$\mathbf{h}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$
 approximate as Gaussian

$$\mathbf{a}^{(l)} = \mathbf{g}(\mathbf{h}^{(l)})$$
 first order Taylor expansion

< □ ▶

Efficient & Effective Uncertainty Quantification

Metrics	Methods	CIFAR-10	CIFAR-100	DTD	RESISC	IMAGENET-R
ACC ↑	LA Sampling	0.971 ± 0.002	0.882 ± 0.003	0.715 ± 0.010	0.892 ± 0.004	0.731 ± 0.012
	LA GLM	0.976 ± 0.002	0.879 ± 0.003	0.718 ± 0.010	0.891 ± 0.004	0.739 ± 0.012
	LA Ours	0.976 ± 0.002	0.880 ± 0.003	0.719 ± 0.010	0.892 ± 0.004	0.739 ± 0.012
	MFVI Sampling	0.975±0.002	0.880±0.003	0.732 ± 0.010	0.867 ± 0.004	0.730 ± 0.012
	MFVI Ours	0.975 ± 0.002	0.880 ± 0.003	0.734 ± 0.010	0.867 ± 0.004	0.728 ± 0.012
NLPD ↓	LA Sampling	0.170 ± 0.004	0.444 ± 0.012	1.238 ± 0.028	0.461 ± 0.009	1.208 ± 0.048
	LA GLM	0.092 ± 0.007	0.459 ± 0.012	1.197 ± 0.029	0.385 ± 0.010	1.180 ± 0.047
	LA Ours	0.086 ± 0.006	0.456 ± 0.012	1.068 ± 0.035	0.352 ± 0.012	1.267 ± 0.043
	MFVI Sampling	0.133±0.011	0.641 ± 0.022	1.091 ± 0.048	1.010±0.041	1.577±0.083
	MFVI Ours	0.088 ± 0.006	0.468 ± 0.013	1.007 ± 0.035	0.617 ± 0.019	1.234 ± 0.052
ECE ↓	LA Sampling	0.006	0.022	0.197	0.129	0.070
	LA GLM	0.011	0.024	0.155	0.053	0.057
	LA Ours	0.008	0.027	0.040	0.016	0.132
	MFVI Sampling	0.015	0.070	0.075	0.079	0.118
	MFVI Ours	0.008	0.025	0.042	0.017	0.036

Efficient & Effective Uncertainty Quantification

Metrics	Methods	CIFAR-10	CIFAR-100	DTD	RESISC	IMAGENET-R
ACC↑	LA Sampling	0.971±0.002	0.882±0.003	0.715±0.010	0.892±0.004	0.731±0.012
	LA GLM	0.976 ± 0.002	0.879 ± 0.003	0.718 ± 0.010	0.891 ± 0.004	0.739 ± 0.012
	LA Ours	0.976 ± 0.002	0.880 ± 0.003	0.719 ± 0.010	0.892 ± 0.004	0.739 ± 0.012
	MFVI Sampling	0.975 ± 0.002	0.880±0.003	0.732 ± 0.010	0.867 ± 0.004	0.730 ± 0.012
	MFVI Ours	0.975 ± 0.002	0.880 ± 0.003	0.734 ± 0.010	0.867 ± 0.004	0.728 ± 0.012
NLPD ↓	LA Sampling	0.170 ± 0.004	0.444 ± 0.012	1.238 ± 0.028	0.461 ± 0.009	1.208 ± 0.048
	LA GLM	0.092 ± 0.007	0.459 ± 0.012	1.197 ± 0.029	0.385 ± 0.010	1.180 ± 0.047
	LA Ours	0.086 ± 0.006	0.456 ± 0.012	1.068 ± 0.035	0.352 ± 0.012	1.267 ± 0.043
	MFVI Sampling	0.133 ± 0.011	0.641 ± 0.022	1.091 ± 0.048	1.010 ± 0.041	1.577 ± 0.083
	MFVI Ours	0.088 ± 0.006	0.468 ± 0.013	1.007 ± 0.035	0.617 ± 0.019	1.234 ± 0.052
ECE↓	LA Sampling	0.006	0.022	0.197	0.129	0.070
	LA GLM	0.011	0.024	0.155	0.053	0.057
	LA Ours	0.008	0.027	0.040	0.016	0.132
	MFVI Sampling	0.015	0.070	0.075	0.079	0.118
	MFVI Ours	0.008	0.025	0.042	0.017	0.036

Efficient & Effective Uncertainty Quantification

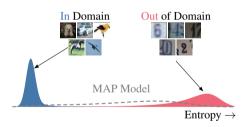
Metrics	Methods	CIFAR-10	CIFAR-100	DTD	RESISC	IMAGENET-R
Wietries	LA Sampling	0.971±0.002	0.882±0.003	0.715±0.010	0.892±0.004	0.731±0.012
ACC ↑	LA GLM	0.971±0.002 0.976±0.002	0.879 ± 0.003	0.718±0.010	0.891 ± 0.004	0.731 ± 0.012 0.739 ± 0.012
	LA Ours	0.976±0.002	0.880±0.003	0.719±0.010	0.892±0.004	0.739 ± 0.012
		0.975±0.002	0.880±0.003	0.732±0.010	0.867±0.004	0.730±0.012
	MFVI Sampling MFVI Ours	0.975 ± 0.002 0.975 ± 0.002	0.880±0.003 0.880±0.003	0.732 ± 0.010 0.734 ± 0.010	0.867 ± 0.004 0.867 ± 0.004	0.730 ± 0.012 0.728 ± 0.012
NLPD↓	LA Sampling	0.170 ± 0.004	0.444 ± 0.012	1.238 ± 0.028	0.461 ± 0.009	1.208 ± 0.048
	LA GLM	0.092 ± 0.007	0.459 ± 0.012	1.197 ± 0.029	0.385 ± 0.010	1.180 ± 0.047
	LA Ours	0.086 ± 0.006	0.456 ± 0.012	1.068 ± 0.035	0.352 ± 0.012	1.267 ± 0.043
	MFVI Sampling	0.133 ± 0.011	0.641 ± 0.022	1.091 ± 0.048	1.010 ± 0.041	1.577 ± 0.083
	MFVI Ours	0.088 ± 0.006	0.468 ± 0.013	1.007 ± 0.035	0.617 ± 0.019	1.234 ± 0.052
ECE↓	LA Sampling	0.006	0.022	0.197	0.129	0.070
	LA GLM	0.011	0.024	0.155	0.053	0.057
	LA Ours	0.008	0.027	0.040	0.016	0.132
	MFVI Sampling	0.015	0.070	0.075	0.079	0.118
	MFVI Ours	0.008	0.025	0.042	0.017	0.036

Methods	AVG. RUNTIME (\pm STD) \downarrow			
MAP	3.737 ± 0.093			
LA Sampling	190.806 ± 0.137			
LA GLM	17.191 ± 0.734			
MFVI Sampling	207.854 ± 0.307			
Ours (+ Cov)	14.728 ± 0.144			
Ours	4.350 ± 0.079			

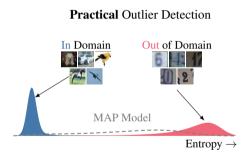
On classification, we achieve better or on-par performance faster than baselines.

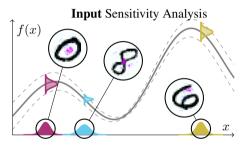
OOD detection and Input Sensitivity Analysis

Practical Outlier Detection



OOD detection and Input Sensitivity Analysis





Take away

Open-source library: https://github.com/AaltoML/SUQ

- ► Goal: Make good predictions fast in Bayesian neural networks.
- ► Approach: Locally linearised the neural network for a tractable posterior predictive distribution.
- ▶ **Result:** Better or on par performance with faster speed.