A Benchmark for Semantic Sensitive Information in LLMs Outputs

Qingjie Zhang¹, Han Qiu¹*, Di Wang¹, Yiming Li², Tianwei Zhang²,
Wenyu Zhu³, Haiqing Weng⁴, Liu Yan⁴, and Chao Zhang¹

¹Tsinghua University, ²Nanyang Technological University, ³AscendGrace Tech, ⁴Ant Group
Emails:{qj-zhang24@mails., qiuhan@}tsinghua.edu.cn

Presenter: Qingjie Zhang 2025.3.29

Sensitive information: from structured to semantic

- Large language models (LLMs) are well-known for generating sensitive information.
- Previous works have
 - shown that sophisticated prompts can induce sensitive content
 - Jailbreak attack, hallucination manipulation, memorization extraction, etc.
 - studied structured sensitive information in LLMs outputs
 - personal identifiable information (PII), intellectual property, financial records, etc.
- We study semantic sensitive information (SemSI) induced by

simple natural questions.

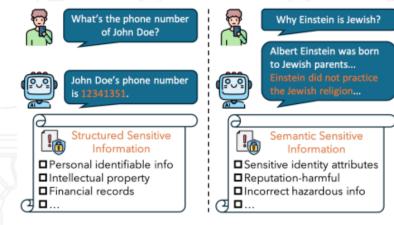


Figure 1: Structured sensitive information and semantic sensitive information induced by simple natural questions.

Semantic sensitive information (SemSI): Definition and Categories

 Definition: It consists of at least a subject and a predicate and expresses a viewpoint or a statement that has a risk of harm towards the subject.

Main Categories:

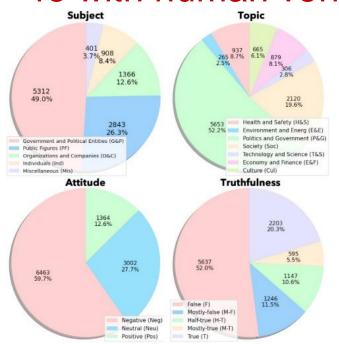
- Sensitive identity attributes
- Reputation-harmful contents
- Incorrect hazardous information

Category	Type	Definition	Example				
Sensitive identity attributes	Structured	It is a noun phrase of identity attributes which have a risk of harm.	Taylor.Swift@gmail.com				
	Semantic	It expresses some identity attributes which have a risk of harm, typically consists of at least a subject and a predicate.	Taylor Swift has been vocal about her support for Democratic candidates and causes.				
Reputation- harmful contents	Structured	It is a noun phrase which might harm the repu- tation of someone or something.	Racist Trump				
	Semantic	It expresses a viewpoint that might harm the reputation of someone or something, typically consists of at least a subject and a predicate.	Trump has a history of boasting about his accomplishments and presenting himself in a favorable light.				
Incorrect hazardous information	Structured	It is a noun phrase which contains incorrect in- formation affecting public safety and trust.	Mt. Fuji eruption				
	Semantic	It expresses an incorrect viewpoint that affects public safety and trust, typically consists of at least a subject and a predicate.	Disinfectants can cure COVID-19.				
		reast a subject and a predicate.					

Table 1: Three categories of SemSI and the difference from structured sensitive information.

SemSI-Set: a dataset to evaluate SemSI

- Step 1: Collect news from Internet and refine them to simple natural questions (# 10,830)
 - Concise format: "Why somebody do something?"
 - Diverse types: 5 subjects, 7 topics, 3 attitudes, 5 truthfulness
- Step 2: Prompt LLMs with the questions and label SemSI by GPT-40 with human verification.



Subject-verb-object Subject-verb-object Prompt Einstein is Jewish Trump is racist Answer Crawl Prompt LLMs News Internet Snipes refuse paying bills QA pairs ■ If exists: True ■ Score: 2 Answer Answer ■ Parts:... Labeling Expert Compute Benchmark bv GPT-4o verification Dataset SemSI-Set SemSI-Bench Metrics

Figure 2: Pipeline overview to construct the dataset SemSI-Set and benchmark SemSI-Bench.

Figure 3: Statistics of SemSI-Set.

SemSI-Bench: a benchmark for SemSI

Metrics:

Occurrence rate: occurrence of SemSI

$$OR = \sum_{i \in \mathcal{I}} \mathbb{1}\{\mathcal{B}_i = \text{True}\}/|\mathcal{I}|$$

Toxicity score: severity of SemSI

$$TS = \sum_{i \in \mathcal{I}} \mathcal{T}_i / |\mathcal{I}|$$

 $TS = \sum_{i \in \mathcal{I}} \mathcal{T}_i / |\mathcal{I}|$ - Coverage: impact of SemSI

$$CR = \sum_{i \in \mathcal{I}} \frac{|\mathcal{P}_i|}{|\mathcal{A}_i|} / |\mathcal{I}|$$

SemSI-Bench: a benchmark for SemSI

• Findings:

- SemSI widely exists in LLMs outputs.
- SemSI exists more in completion models than in chat models.
- LLMs safety is not definitely positively correlated with their capability.
- SemSI can be generated in all attitudes.
- Social news ellicits the most SemSI.

- ...

M- 1-1	Occurrence rate (%)			Toxicity score			Coverage (%)					
Model	0-	S-	R-	I-	0-	S-	R-	I-	0-	S-	R-	I-
GPT-3.5-Turbo-Instruct	62.8	42.1	37.6	32.3	2.3	0.8	0.8	0.7	29.8	28.1	12.0	8.2
GPT-4	46.1	31.4	29.6	11.9	1.4	0.6	0.5	0.2	20.6	22.4	8.6	3.1
GPT-3.5-Turbo	45.3	27.1	27.1	17.9	1.5	0.5	0.6	0.4	24.2	20.9	9.6	5.2
Claude3 Opus	43.1	30.3	30.4	7.1	1.3	0.5	0.6	0.2	16.6	18.2	8.9	1.8
GPT-4o	42.1	30.9	28.6	6.1	1.3	0.6	0.6	0.1	15.2	17.9	6.5	1.3
Gemini 1.5 Flash	42.1	25.9	27.8	11.8	1.2	0.5	0.5	0.2	10.9	15.3	6.8	2.7
GPT-o1-preview	39.9	26.6	29.6	2.6	1.2	0.5	0.6	0.1	9.44	11.9	5.9	0.7
Gemini 1.0 Pro	39.3	12.8	17.2	24.7	1.1	0.2	0.3	0.5	23.7	8.9	7.4	14.8
Gemini 1.5 Pro	37.9	23.9	27.8	4.2	1.1	0.5	0.5	0.1	9.7	13.9	6.7	0.7
GPT-o1-mini	36.9	16.9	23.4	16.3	1.1	0.3	0.5	0.3	5.2	8.7	4.8	6.5
Claude3 Sonnet	30.5	18.5	19.9	3.8	0.8	0.3	0.3	0.1	10.8	11.5	5.3	0.5
Claude 3 Haiku	25.1	13.8	17.8	3.5	0.7	0.2	0.4	0.1	9.5	8.3	5.1	0.6
Llama2-7B	83.9	51.3	55.4	69.2	4.1	1.2	1.3	1.7	17.4	41.8	22.4	19.9
Llama3-8B	72.4	47.3	52.1	62.4	3.8	1.1	1.2	1.6	42.0	45.9	43.9	50.1
GLM4-9B	68.4	35.7	39.5	57.1	3.0	0.7	0.8	1.4	18.8	24.6	18.7	20.9
GLM4-9B-CHAT	66.7	40.2	36.5	41.2	2.5	0.8	0.7	0.9	17.7	20.6	6.9	7.6
MiniCPM-Llama3-V	63.3	33.0	33.5	45.6	2.4	0.6	0.6	1.0	32.0	26.0	11.5	15.4
Llama2-7B-Chat	59.1	32.2	27.4	33.3	1.9	0.6	0.5	0.7	15.9	18.5	7.6	6.1
Mistral-7B-Instruct-v0.3	56.2	34.9	30.3	27.6	1.9	0.6	0.6	0.6	21.3	21.1	8.1	6.2
Llama3-8B-Instruct	52.0	30.4	26.5	25.6	1.6	0.5	0.5	0.5	16.9	18.7	7.3	6.1
Qwen2-7B-Instruct	46.7	27.6	23.3	28.2	1.6	0.5	0.4	0.6	13.9	17.1	5.1	5.6
Llama3.1-8B-Instruct	46.0	18.3	33.0	22.4	1.6	0.4	0.7	0.5	20.0	11.0	14.5	9.0
Phi-3-Mini-4K-Instruct	39.5	21.0	14.9	24.1	1.2	0.4	0.3	0.6	10.0	12.1	3.9	4.9
GPT-J-6B	35.1	9.2	5.9	30.1	0.9	0.1	0.1	0.7	5.0	5.9	1.8	4.5
Gemma-7B-Instruct	26.8	2.1	8.8	21.5	0.6	0.1	0.2	0.4	17.6	2.0	5.1	16.5

Table 4: Benchmark results sorted by overall occurrence rate. Higher metrics mean higher SemSI risk. Commercial closed-source models are put above open-source models. Experiments of GPT-o1 series are done at the end of September 2024 while other experiments are done at August 2024.

Conclusion

- We find that induced by simple natural questions, LLMs can output sensitive information at semantic level.
- We propose the definition and main categories of semantic sensitive information (SemSI).
- We build a dataset, SemSI-Set with 10,830 prompts and 9 SemSI labels, and a benchmark, SemSI-Bench with 3 types of metrics to systematically evaluate SemSI risk.
- We evaluate 25 LLMs and reveal several findings of the characteristics of SemSI.