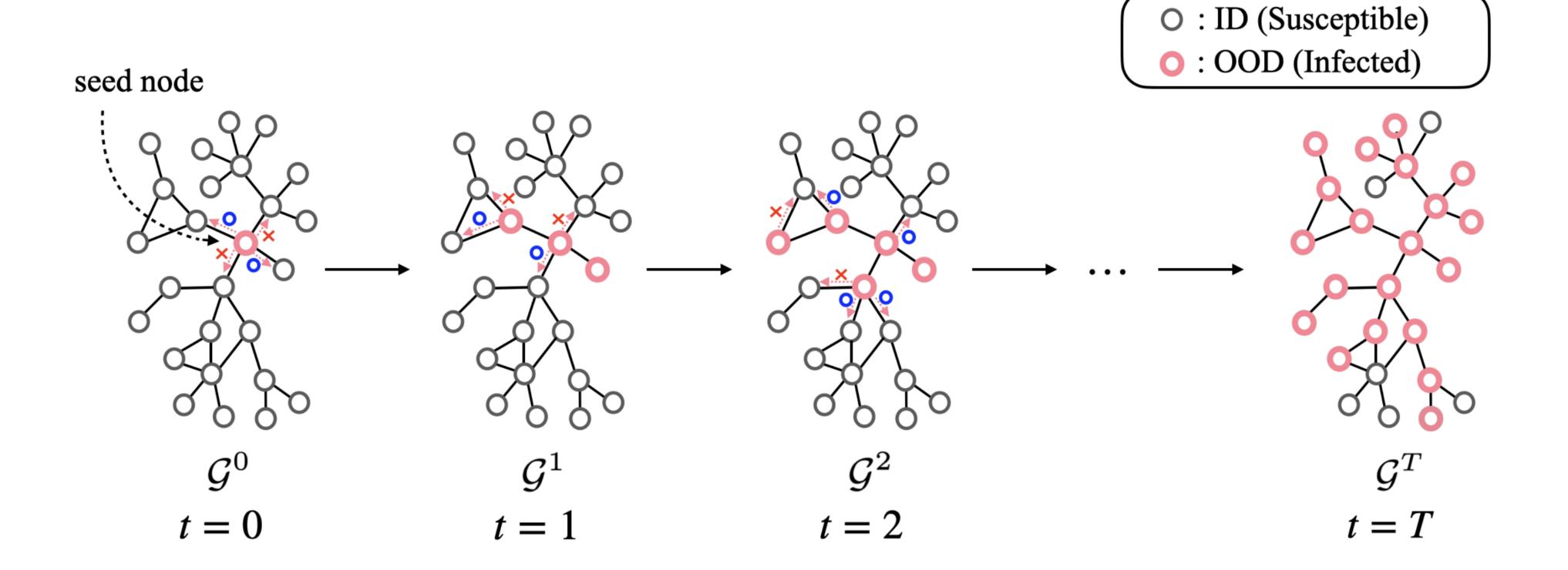
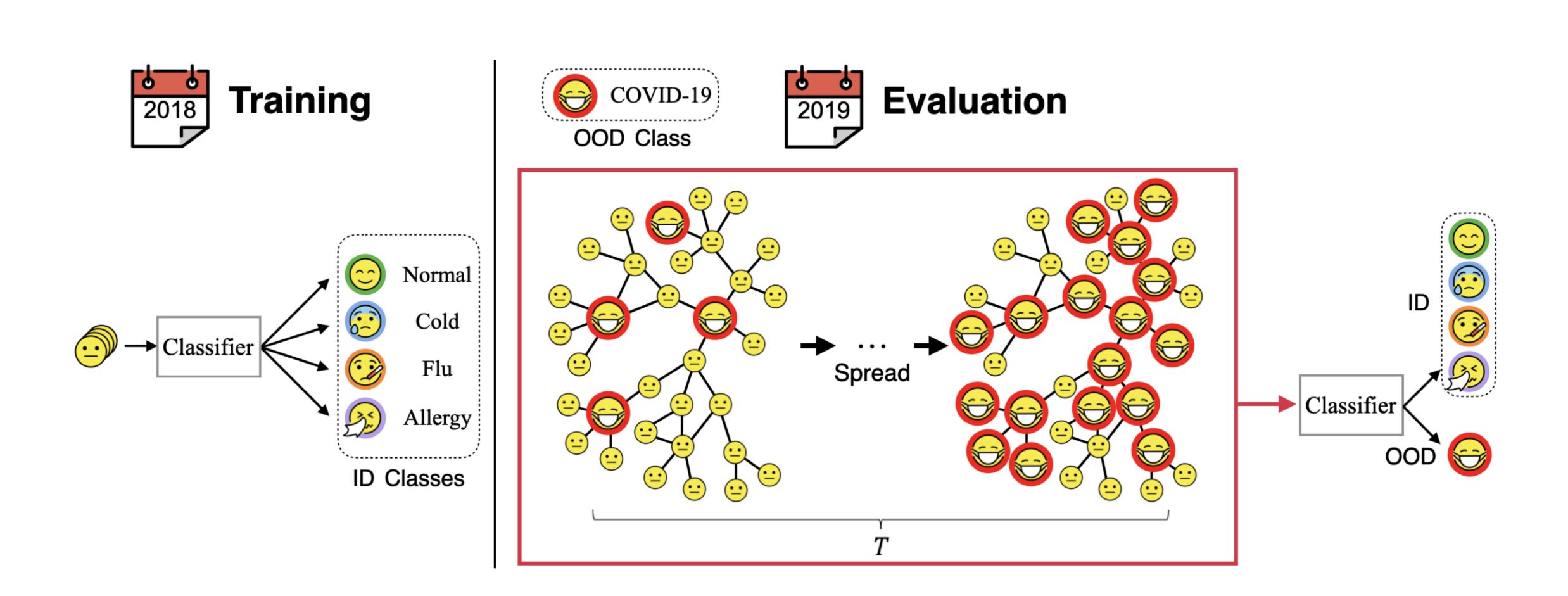


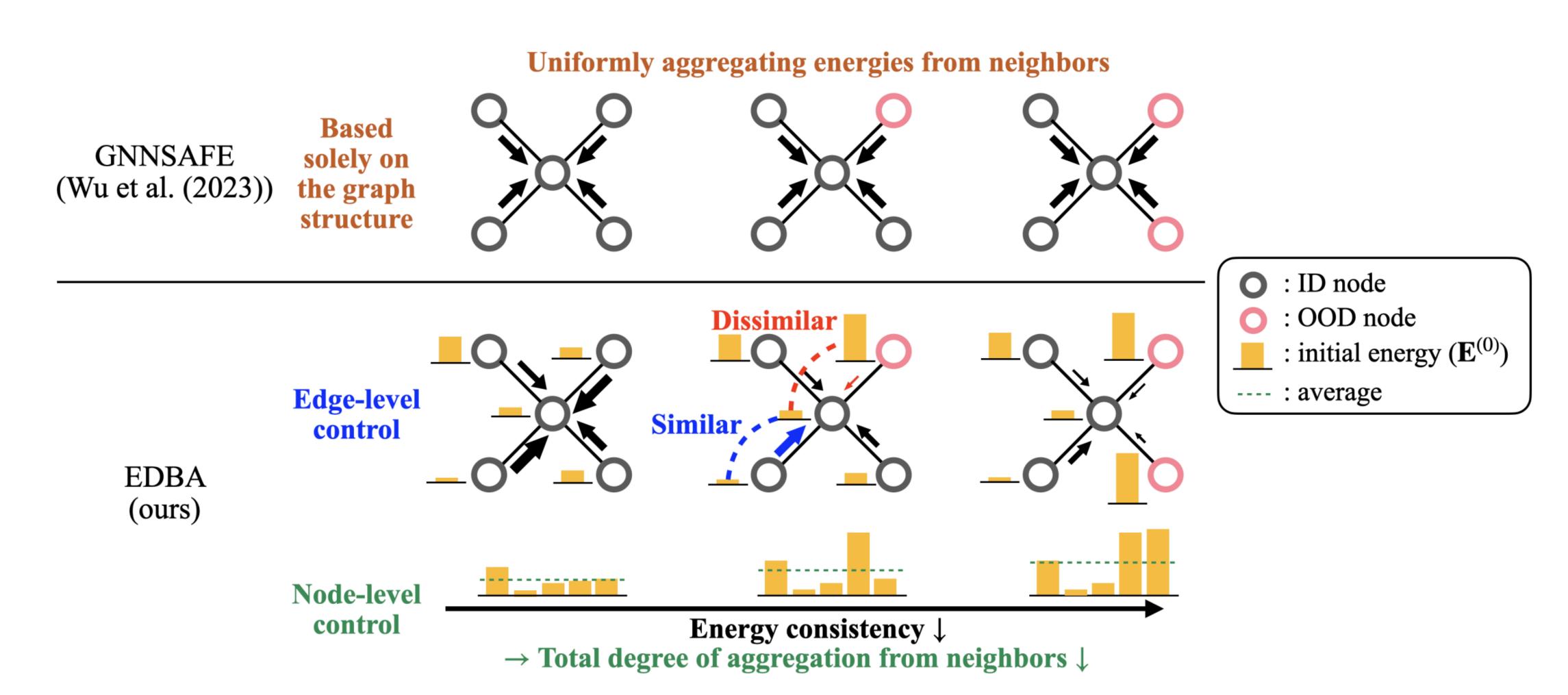
Spreading Out-of-Distribution on Graphs


Daeho Um¹, Jongin Lim¹, Sunoh Kim², Yuneil Yeo³, Yoonho Jung⁴

¹Al Center, Samsung Electronics, ²Dankook University, ³UC Berkeley, ⁴Seoul National University


Node-Level OOD Detection Benchmark

- Node-level OOD detection methods are commonly evaluated on synthetic graph datasets where OOD samples are assigned to randomly selected nodes.
- Nodes belonging to randomly selected classes or randomly selected nodes are designated as OOD.
- These previous evaluation scenarios fail to reflect interactions with the various nodes associated with OOD samples.


Spreading OOD Detection

Spreading COVID-19 Dataset

Energy Distribution-Based Aggregation (EDBA)

Experiments

Label leave-out

Dataset	CORA			AMAZON-PHOTO			
Method	FPR95(↓)	AUROC(↑)	AUPR(↑)	FPR95(↓)	AUROC(↑)	AUPR(↑)	
MSP	40.37 ± 2.19	91.13 ± 0.22	78.16 ± 0.19	28.87 ± 1.65	94.41 ± 0.61	92.44 ± 0.75	
ODIN	100.00 ± 0.00	49.05 ± 0.57	24.18 ± 0.08	92.72 ± 8.43	63.30 ± 7.61	51.72 ± 7.43	
Mahalanobis	86.11 ± 6.19	66.93 ± 1.95	40.56 ± 3.77	56.11 ± 16.06	82.51 ± 4.83	75.73 ± 7.09	
Energy	38.36 ± 3.46	91.46 ± 0.33	78.10 ± 0.29	30.49 ± 3.93	93.96 ± 0.68	91.73 ± 0.75	
GKDE	60.88 ± 2.25	87.15 ± 0.60	72.12 ± 1.10	91.60 ± 8.81	60.00 ± 11.43	56.61 ± 12.77	
GPN	44.04 ± 5.85	87.48 ± 6.38	81.21 ± 7.40	35.54 ± 11.48	91.48 ± 2.71	88.04 ± 3.41	
OODGAT	85.21 ± 1.66	64.81 ± 0.87	62.65 ± 1.01	13.33 ± 0.46	97.27 ± 0.33	95.01 ± 0.60	
GNNSAFE	31.31 ± 1.11	92.84 ± 0.38	82.22 ± 0.40	6.57 ± 0.38	97.36 ± 0.04	97.13 ± 0.10	
EDBD	30.48 ± 1.11	92.95 ± 0.38	82.31 ± 0.38	$ \boxed{ 5.82 \pm 0.66 }$	97.48 ± 0.07	97.60 ± 0.06	
	AMAZON-COMPUTERS			COAUTHOR-CS			
Dataset	AM	IAZON-COMPUTI	ERS		COAUTHOR-CS		
Dataset Method	AM FPR95(↓)	IAZON-COMPUTI AUROC(†)	ERS AUPR(†)	 FPR95(↓)	COAUTHOR-CS AUROC(↑)	AUPR(†)	
	I			FPR95(\downarrow) 29.07 \pm 3.53		$AUPR(\uparrow)$ 97.73 ± 0.28	
Method	FPR95(↓)	AUROC(†)	AUPR(†)		AUROC(†)		
Method	FPR95(\downarrow) 70.77 \pm 3.54	$\begin{array}{c} \text{AUROC}(\uparrow) \\ \hline 76.81 \pm 2.31 \end{array}$	AUPR(†) 71.01 ± 2.23	29.07 ± 3.53	$\begin{array}{c} \text{AUROC}(\uparrow) \\ 94.15 \pm 0.73 \end{array}$	97.73 ± 0.28	
Method MSP ODIN	FPR95(\downarrow)	AUROC(\uparrow) 76.81 ± 2.31 53.36 ± 1.91	AUPR(\uparrow) 71.01 ± 2.23 45.93 ± 2.83	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AUROC(\uparrow) 94.15 ± 0.73 52.35 ± 4.36	97.73 ± 0.28 75.26 ± 1.96	
Method MSP ODIN Mahalanobis	FPR95(\downarrow)	AUROC(\uparrow) 76.81 ± 2.31 53.36 ± 1.91 73.14 ± 1.27	AUPR(\uparrow) 71.01 ± 2.23 45.93 ± 2.83 62.63 ± 2.43	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AUROC(\uparrow) 94.15 ± 0.73 52.35 ± 4.36 81.73 ± 3.53	97.73 ± 0.28 75.26 ± 1.96 84.30 ± 15.80	
Method MSP ODIN Mahalanobis Energy	FPR95(\downarrow) 70.77 ± 3.54 98.72 ± 2.56 71.09 ± 1.90 58.40 ± 3.41	AUROC(\uparrow) 76.81 \pm 2.31 53.36 \pm 1.91 73.14 \pm 1.27 84.72 \pm 1.50	AUPR(\uparrow) 71.01 ± 2.23 45.93 ± 2.83 62.63 ± 2.43 79.36 ± 1.66	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	AUROC(\uparrow) 94.15 \pm 0.73 52.35 \pm 4.36 81.73 \pm 3.53 95.98 \pm 0.71	97.73 ± 0.28 75.26 ± 1.96 84.30 ± 15.80 98.39 ± 0.29	
Method MSP ODIN Mahalanobis Energy GKDE	FPR95(\downarrow) 70.77 ± 3.54 98.72 ± 2.56 71.09 ± 1.90 58.40 ± 3.41 90.64 ± 7.22	AUROC(\uparrow) 76.81 \pm 2.31 53.36 \pm 1.91 73.14 \pm 1.27 84.72 \pm 1.50 58.59 \pm 10.46	AUPR(\uparrow) 71.01 ± 2.23 45.93 ± 2.83 62.63 ± 2.43 79.36 ± 1.66 49.23 ± 8.10	$ \begin{array}{c c} 29.07 \pm 3.53 \\ 100.00 \pm 0.00 \\ 64.40 \pm 14.83 \\ 18.60 \pm 3.87 \\ 59.70 \pm 7.83 \end{array} $	AUROC(\uparrow) 94.15 ± 0.73 52.35 ± 4.36 81.73 ± 3.53 95.98 ± 0.71 88.02 ± 1.77 93.54 ± 3.35 96.83 ± 0.21	97.73 ± 0.28 75.26 ± 1.96 84.30 ± 15.80 98.39 ± 0.29 95.50 ± 0.65	
Method MSP ODIN Mahalanobis Energy GKDE GPN	FPR95(\downarrow) 70.77 ± 3.54 98.72 ± 2.56 71.09 ± 1.90 58.40 ± 3.41 90.64 ± 7.22 80.55 ± 16.98	AUROC(\uparrow) 76.81 ± 2.31 53.36 ± 1.91 73.14 ± 1.27 84.72 ± 1.50 58.59 ± 10.46 74.08 ± 15.09	AUPR(\uparrow) 71.01 ± 2.23 45.93 ± 2.83 62.63 ± 2.43 79.36 ± 1.66 49.23 ± 8.10 69.27 ± 17.30	$\begin{array}{c c} 29.07 \pm 3.53 \\ 100.00 \pm 0.00 \\ 64.40 \pm 14.83 \\ 18.60 \pm 3.87 \\ 59.70 \pm 7.83 \\ 26.68 \pm 11.56 \end{array}$	AUROC(\uparrow) 94.15 ± 0.73 52.35 ± 4.36 81.73 ± 3.53 95.98 ± 0.71 88.02 ± 1.77 93.54 ± 3.35	97.73 ± 0.28 75.26 ± 1.96 84.30 ± 15.80 98.39 ± 0.29 95.50 ± 0.65 97.40 ± 1.47	

Experiments

Spreading OOD detection in the COVID-19 dataset

Single-seed setting

Epidemic model		SI			SIS			
Method	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (↑)	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (†)		
MSP	94.25 ± 4.56	38.51 ± 5.41	70.17 ± 4.55	97.98 ± 1.38	34.45 ± 5.87	70.01 ± 2.73		
ODIN	93.19 ± 5.00	61.82 ± 11.50	78.08 ± 6.05	89.87 ± 5.76	65.86 ± 10.63	80.26 ± 5.54		
Mahalanobis	63.64 ± 44.93	47.29 ± 42.24	79.46 ± 15.28	72.71 ± 36.33	46.61 ± 34.07	78.95 ± 12.00		
Energy	54.82 ± 17.43	80.46 ± 8.54	88.00 ± 5.52	67.94 ± 18.98	73.94 ± 14.49	85.51 ± 5.70		
GPN	95.29 ± 2.36	50.35 ± 13.69	79.55 ± 65.45	87.07 ± 14.50	67.20 ± 12.68	83.03 ± 4.40		
GNNSAFE	69.76 ± 15.23	80.65 ± 6.07	87.40 ± 4.12	77.76 ± 14.64	76.02 ± 12.65	85.53 ± 5.30		
EDBD	$oxed{ 54.67 \pm 17.58 }$	81.60 ± 8.35	88.22 ± 5.59	$ \boxed{ \textbf{67.42} \pm \textbf{19.75} }$	$\textbf{76.22} \pm \textbf{14.58}$	$\textbf{85.94} \pm \textbf{5.94}$		

Multi-seed setting

Epidemic model		SI		SIS			
Method	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (↑)	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (†)	
MSP	96.29 ± 1.94	36.41 ± 5.86	58.63 ± 3.18	96.14 ± 1.87	37.49 ± 5.36	55.23 ± 2.98	
ODIN	92.61 ± 3.42	63.15 ± 12.07	72.47 ± 6.61	91.93 ± 4.69	64.59 ± 10.37	69.05 ± 6.80	
Mahalanobis	90.44 ± 0.53	27.93 ± 0.67	53.78 ± 0.95	90.55 ± 0.50	31.09 ± 0.63	54.08 ± 0.62	
Energy	49.78 ± 14.73	82.66 ± 6.79	85.94 ± 4.92	60.40 ± 10.33	80.18 ± 6.24	81.63 ± 4.84	
GPN	87.72 ± 6.17	62.81 ± 9.26	75.13 ± 5.38	89.29 ± 5.18	61.85 ± 8.69	71.39 ± 5.29	
GNNSAFE	63.42 ± 14.09	82.21 ± 5.91	86.11 ± 4.33	63.32 ± 1.14	77.80 ± 5.16	80.40 ± 3.96	
EDBD	$oxed{ }~ \mathbf{49.62 \pm 15.22}$	83.29 ± 6.68	86.11 ± 5.01	$ \boxed{ 59.93 \pm 10.47 } $	80.68 ± 6.16	81.70 ± 4.92	

Experiments

Spreading OOD detection in benchmark datasets

Epidemic	Dataset	CORA			LASTFM ASIA			
model	Method	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (↑)	FPR95-T (↓)	AUROC-T (↑)	AUPR-T (↑)	
	MSP	24.80 ± 16.38	96.04 ± 2.26	97.73 ± 1.13	52.98 ± 0.41	93.71 ± 1.80	97.96 ± 0.44	
	ODIN	100.00 ± 0.00	45.65 ± 10.85	74.03 ± 4.70	100.00 ± 0.00	17.35 ± 6.96	68.61 ± 4.08	
	Mahalanobis	65.32 ± 44.90	65.50 ± 32.93	88.21 ± 11.85	59.29 ± 48.43	87.34 ± 15.97	96.66 ± 3.92	
SI	Energy	22.79 ± 18.21	96.36 ± 2.12	98.03 ± 1.07	54.44 ± 16.82	93.56 ± 1.71	97.86 ± 0.45	
	GPN	100.00 ± 0.00	53.71 ± 4.38	73.93 ± 2.67	100.00 ± 0.00	19.70 ± 9.19	75.05 ± 18.16	
	GNNSAFE	31.15 ± 10.74	93.45 ± 2.16	97.59 ± 0.71	64.83 ± 8.52	83.73 ± 4.22	93.94 ± 1.05	
	EDBD	14.99 ± 14.53	97.54 ± 1.81	98.68 ± 0.85	46.68 ± 14.83	94.10 ± 1.71	98.11 ± 0.41	
	MSP	40.47 ± 8.78	92.91 ± 1.34	93.22 ± 1.59	57.19 ± 18.25	91.48 ± 2.88	94.26 ± 1.43	
	ODIN	95.52 ± 8.97	52.14 ± 11.24	69.25 ± 6.79	100.00 ± 0.00	20.71 ± 9.38	61.54 ± 5.78	
	Mahalanobis	74.28 ± 40.81	68.97 ± 25.99	88.02 ± 10.64	86.86 ± 28.32	83.20 ± 6.94	94.87 ± 1.96	
SIS	Energy	38.95 ± 9.16	93.27 ± 1.34	93.59 ± 1.55	58.12 ± 18.99	91.08 ± 3.27	94.07 ± 1.57	
	GPN	100.00 ± 0.00	47.38 ± 4.39	69.93 ± 6.55	100.00 ± 0.00	22.41 ± 13.41	87.30 ± 9.84	
	GNNSAFE	47.55 ± 11.24	90.91 ± 2.78	93.19 ± 1.54	73.94 ± 8.07	82.73 ± 4.55	90.17 ± 1.64	
	EDBD	32.61 ± 7.18	94.17 ± 1.22	94.19 ± 1.39	52.37 ± 19.93	91.78 ± 3.04	94.40 ± 1.52	

Conclusion

- ✓ We introduce spreading OOD detection, a problem that facilitates the evaluation of node-level OOD detection under realistic settings.
- ✓ To highlight the significance of this problem, we then present the Spreading COVID-19 dataset.
- ✓ We propose EDBD that achieves state-of-the-art performance in both spreading OOD detection and conventional node-level OOD detection tasks.
- ✓ We hope that our work will inspire the creation of datasets for practical node-level OOD detection research within the machine learning community.