

EC-DIFFUSER: MULTI-OBJECT MANIPULATION VIA ENTITY-CENTRIC BEHAVIOR GENERATION (ICLR 2025)

Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, Amy Zhang

PRESENTED BY CARL QI

Ph.D. Student, The University of Texas at Austin

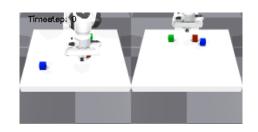
Object Manipulation in the Real World

High-dimensional observations (pixels)
Long-horizon planning
Account for entity-entity relations and interactions

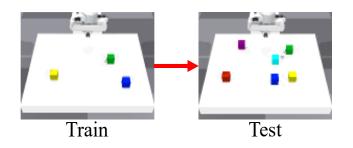
The Goal-Conditioned Multi-Object Manipulation Problem

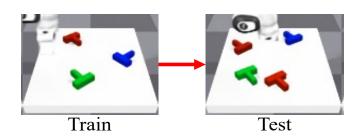
Given an observation and a goal, the policy outputs manipulation actions.

Access to an offline dataset of demonstrations.



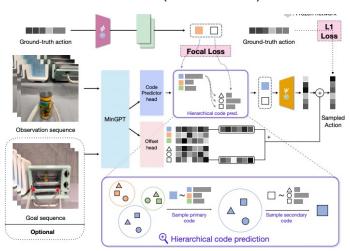
We want to achieve Compositional Generalization.

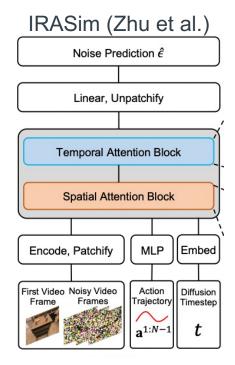




Prior Works on Learning Behavioral Cloning Polices for Multi-Object Manipulation

VQ-BeT(Lee et al.)





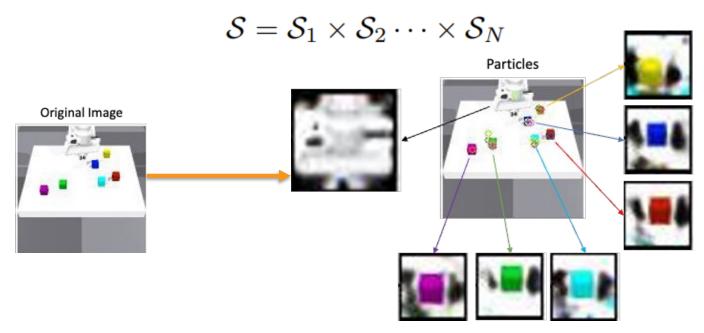
Zhu et al. IRASim: Learning Interactive Real-Robot Action Simulators, 2024.

Lee et al. Behavior Generation with Latent Actions, 2024.

Carl Qi – UT Austin

Structures in Multi-Object Manipulation

We consider consider a factorized "state" space

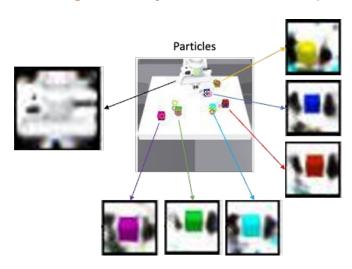


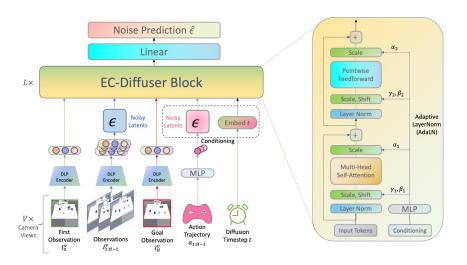
Carl Qi - UT Austin

Method – Our Overall Pipeline

Learning an Object-Centric Representation

Learning an Entity-Centric Policy



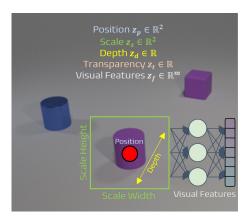


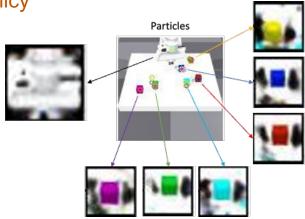
Step 1 - Object-Centric Representation of Images

States, goals acquired from DLP encoder

Multi-view perception

Pre-trained on data collected with a random policy





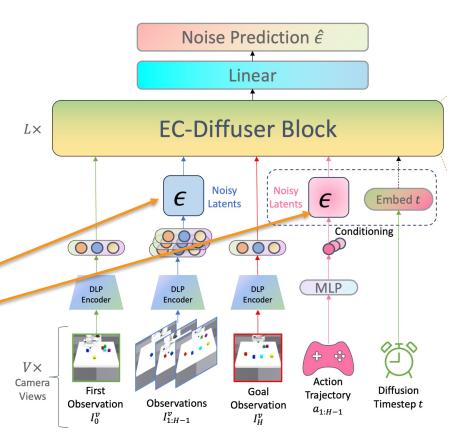
$$z = \left\{ \left[z_{position}, z_{scale}, z_{depth}, z_{transparency}, z_{visual} \right]_i \right\}_{i=1}^K \in \mathbb{R}^{K \times (6+l)}$$

Daniel et al. Unsupervised Image Representation Learning with Deep Latent Particles, 2022.

Step 2 – Entity-Centric Diffuser

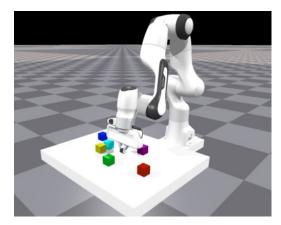
Permutation-Equivariant transformer model that takes in particles and actions as input Diffusion over particles + actions jointly Trained with I1 loss on unordered particles

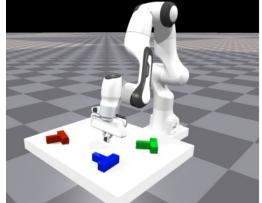
Diffused latents

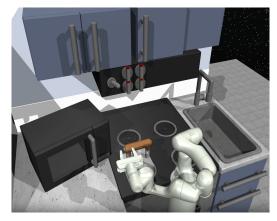


Experiment Results

PushCube - Trained on 1-3 Cubes
PushT - Trained on 1-3 T-blocks
FrankaKitchen - trained on 4 objects







PushCube

PushT

FrankaKitchen

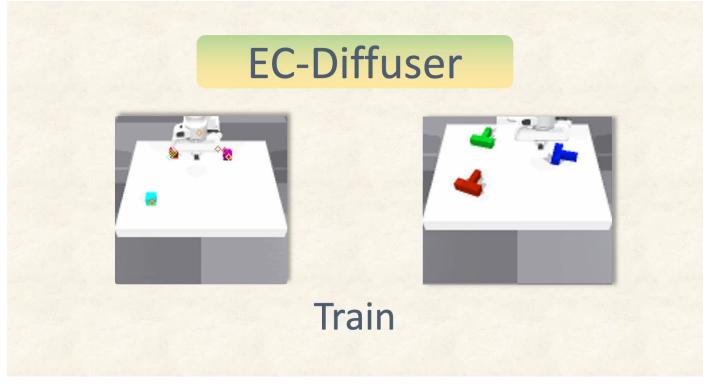
Experiment Results

w/o Diffusion

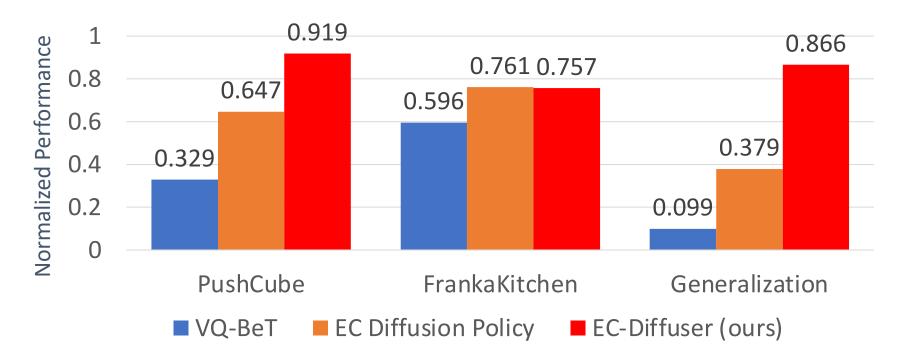
Env (Metric)	# Obj	VQ-BeT	Diffuser	EIT+BC (DLP)	EC Diffusion Policy (DLP)	EC-Diffuser (DLP)
PushCube (Success Rate ↑)	1 2 3	$egin{array}{l} \textbf{0.929} \pm \textbf{0.032} \\ 0.052 \pm 0.010 \\ 0.006 \pm 0.001 \end{array}$	$\begin{array}{c} 0.367 \pm 0.027 \\ 0.013 \pm 0.011 \\ 0.002 \pm 0.004 \end{array}$	$\begin{array}{c} 0.890 \pm 0.019 \\ 0.146 \pm 0.125 \\ 0.141 \pm 0.164 \end{array}$	$0.887 \pm 0.031 \\ 0.388 \pm 0.106 \\ 0.668 \pm 0.169$	$\begin{array}{c} \textbf{0.948} \pm \textbf{0.015} \\ \textbf{0.917} \pm \textbf{0.030} \\ \textbf{0.894} \pm \textbf{0.025} \end{array}$
PushT (Avg. Radian Diff. ↓)	1 2 3	$\begin{array}{c} 1.227 \pm 0.066 \\ 1.520 \pm 0.056 \\ 1.541 \pm 0.045 \end{array}$	$\begin{array}{c} 1.522 \pm 0.159 \\ 1.540 \pm 0.050 \\ 1.542 \pm 0.045 \end{array}$	0.835 ± 0.081 1.465 ± 0.034 1.526 ± 0.047	0.493 ± 0.068 1.214 ± 0.147 1.538 ± 0.040	$egin{array}{l} 0.263 \pm 0.022 \ 0.452 \pm 0.068 \ 0.805 \pm 0.256 \end{array}$
FrankaKitchen (Goals Reached ↑)	-	$2.384* \pm 0.123$	0.846 ± 0.101	2.360 ± 0.088	$\textbf{3.046} \pm \textbf{0.156}$	$\textbf{3.031} \pm \textbf{0.087}$

w/o Object-Centric structure

Generalization Results

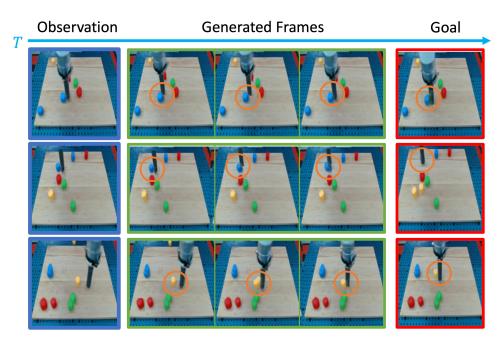


Generalization Results



EC-Diffuser for Real World Problems

LanguageTable is a real-world dataset of object manipulation
EC-Diffuser can generate good future observations



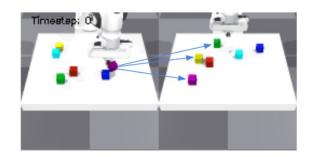
Future Research

Goal-Conditioned Reinforcement Learning with Sparse Rewards

$$J(\pi) = \mathbb{E}_{\substack{a_t \sim \pi(\cdot | s_t, g), g \sim p_g \\ s_{t+1} \sim \mathcal{T}(\cdot | s_t, a_t)}} \left[\sum_t \gamma^t r(s_t, a_t, g) \right]$$

$$r_q(s_t, a_t, g) = 1$$
 (the goal is reached)

$$\mathrm{chamfer}(P_1, P_2) = \frac{1}{2n} \sum_{i=1}^n |x_i - \mathrm{NN}(x_i, P_2)| + \frac{1}{2m} \sum_{j=1}^n |x_j - \mathrm{NN}(x_j, P_1)|$$



Can we learn a structured reward model that generalizes across tasks?

