Constraint-Conditioned Actor-Critic for Offline Safe Reinforcement Learning

Zijian Guo¹, Weichao Zhou², Shengao Wang¹, Wenchao Li^{1,2}

¹Division of Systems Engineering, Boston University ²Department of Electrical and Computer Engineering, Boston University {zjguo, zwc662, wsashawn, wenchao}@bu.edu

Offline Safe RL

- Constrained MDP: $(S, A, P, r, c, \gamma, \mu)$
- Offline dataset: $\mathcal{D} = \{\tau_i\}_{i=1}^N$ with $\tau = \{s_t, a_t, c_t, r_t\}_{t=1}^T$
- Policy that maximizes reward while keeping cost below certain threshold

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi}[R(\tau)] \text{ s.t. } \mathbb{E}_{\tau \sim \pi}[C(\tau)] \leq \epsilon$$

Offline Safe RL

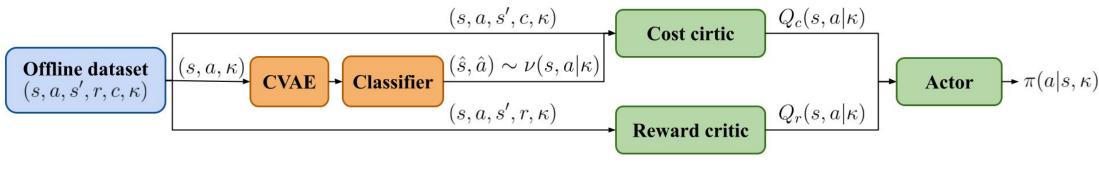
- Constrained MDP: $(S, A, P, r, c, \gamma, \mu)$
- Offline dataset: $\mathcal{D} = \{\tau_i\}_{i=1}^N$ with $\tau = \{s_t, a_t, c_t, r_t\}_{t=1}^T$
- Policy that maximizes reward while keeping cost below certain threshold

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi}[R(\tau)] \text{ s.t. } \mathbb{E}_{\tau \sim \pi}[C(\tau)] \leq \epsilon$$

- However, the threshold ϵ is typically a constant and fixed for training/evaluation
- Varying constraint thresholds
 - Different (or even unseen) thresholds for training/evaluation
 - Time-variant thresholds ϵ_t

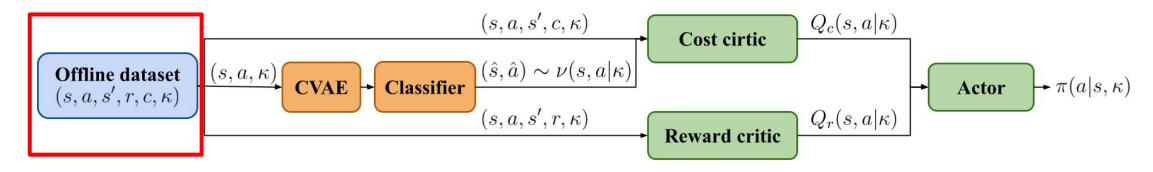
Overview

- Goal: learn safe, high-reward, and adaptable policies
- **Key idea:** model the distribution of states and actions and uncover the relationships between behaviors and constraint thresholds from the offline dataset
- Constraint-conditioned actor-critic (CCAC)



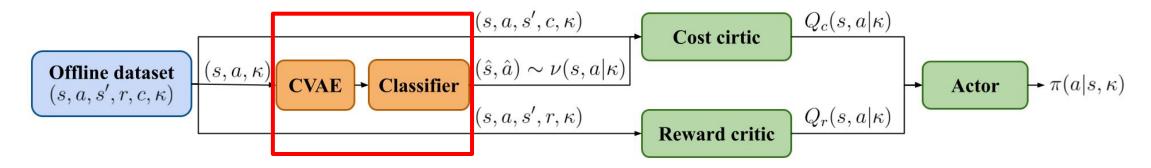
Overview of CCAC

Varying Constraint Thresholds



- Define the varying constraint threshold as **cost budget** κ_t
 - Set the cumulative cost of each trajectory as its initial cost budget: $\kappa_1 = \sum_{t=1}^T c_t$
 - Updated based on incurred cost: $\kappa_{t+1} = \kappa_t c_t$
- Given a cost budget κ , a state-action pair (s, a) is considered **out-of-distribution** (OOD) if taking the action a at the state s will lead to exceeding the cost budget κ

OOD Distribution Modeling



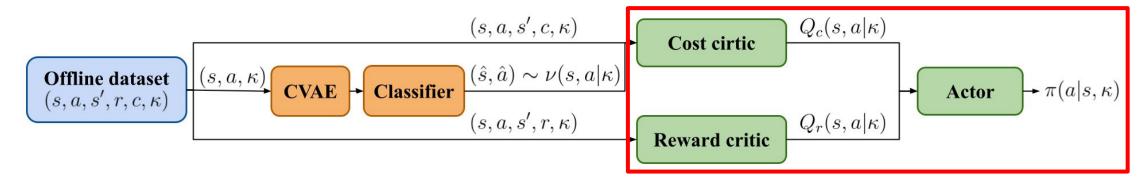
Constraint-conditioned variational autoencoder (CVAE):

$$\max_{p,q} \mathbb{E}_{s,a,\kappa \sim \mathcal{D}} \left[\mathbb{E}_{z \sim q(z|s,a,\kappa)} \left[p(s,a|z,\kappa) \right] - \beta D_{KL} \left(q(z|s,a,\kappa) || p(z|\kappa) \right) \right]$$

where $q(z|s, a, \kappa)$ is the encoder and $p(s, a|z, \kappa)$ is the decoder

- Classifier: $\min_h \mathbb{E}_{s,a,\kappa \sim \mathcal{D}} \left[-y \log(h(s,a|\kappa)) (1-y) \log(1-h(s,a|\kappa)) \right]$
- The OOD distribution $\nu(s, a|\kappa)$ is proportional to $\mathbb{E}_{z \sim p(z|\kappa)}[p(s, a|z, \kappa)h(s, a|\kappa)]$

Constraint-Conditioned Actor-Critic



Constraint-conditioned cost critic (overestimation of OOD state-action pairs):

$$\min_{Q_c} \mathbb{E}_{s,a,\kappa \sim \mathcal{D}} \left[(Q_c(s,a|\kappa) - \mathcal{T}^{\pi} Q_c(s,a|\kappa))^2 \right], \text{ s.t. } \mathbb{E}_{s,a \sim \nu,\kappa \sim \mathcal{D}} [Q_c(s,a|\kappa)] \ge \epsilon$$

Constraint-conditioned reward critic:

$$\min_{Q_r} \mathbb{E}_{s,a,\kappa \sim \mathcal{D}} \left[(Q_r(s,a|\kappa) - \mathcal{T}^{\pi} Q_r(s,a|\kappa))^2 \right]$$

Constraint-conditioned actor:

$$\max_{\pi} \mathbb{E}_{s,\kappa \sim \mathcal{D}, a \sim \pi(a|s,\kappa)} [Q_r(s, a|\kappa)]$$
, s.t. $\mathbb{E}_{s \sim \mathcal{D}, a \sim \pi(a|s,\kappa)} [Q_c(s, a|\kappa)] \leq \kappa, \forall \kappa \in \mathcal{D}$

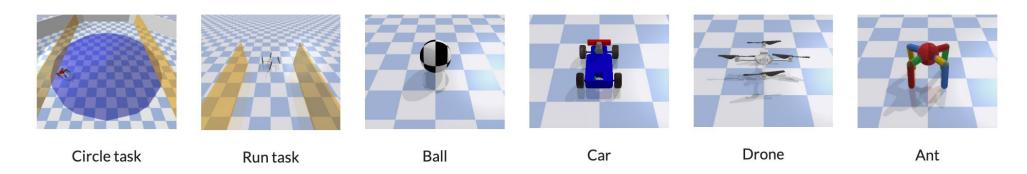
Experimental Settings

- **Environments** (BulletSafetyGym[1], SafetyGymnasium[2])
 - Three tasks: Run, Circle, and Velocity.

Run/Velocity: run as fast as it can within the speed limit between two boundaries

Circle: run in a circle but are constrained within a safe region

• Multiple robots: Ant, Ball, Car, Drone, Hopper, HalfCheetah

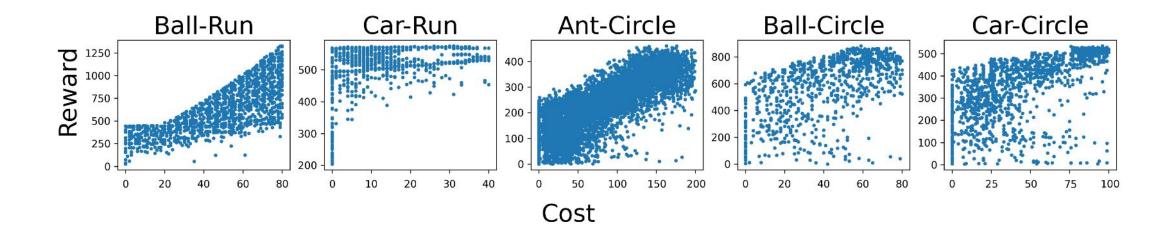


^[1] Gronauer, Sven. "Bullet-safety-gym: A framework for constrained reinforcement learning." (2022).

^[2] Ji, Jiaming, et al. "Safety gymnasium: A unified safe reinforcement learning benchmark." Advances in Neural Information Processing Systems 36 (2023).

Experimental Settings

- Offline datasets: DSRL[3]
 - Reward v.s. cost plots, each dot represents a trajectory



[3] Liu, Zuxin, et al. "Datasets and benchmarks for offline safe reinforcement learning." arXiv preprint arXiv:2306.09303 (2023).

Results

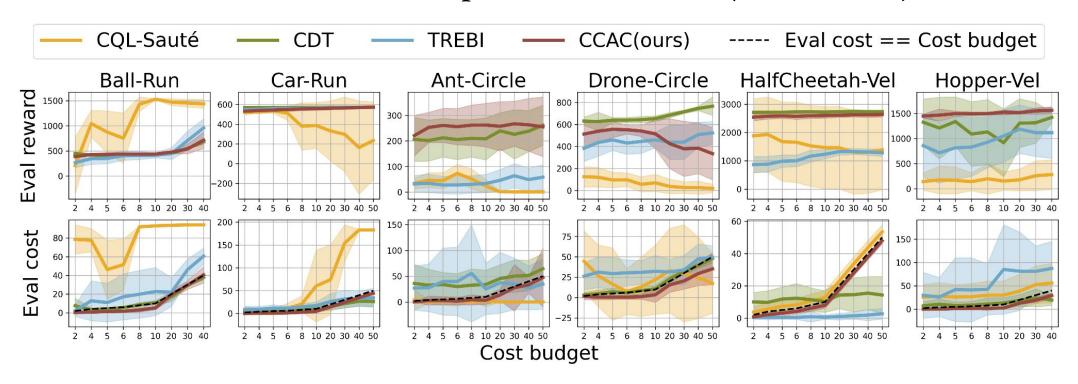
• CCAC can learn **safe and high-reward policies** from offline datasets

Tasks	Metric	CQL-Sauté	BCQ-Lag	BEAR-Lag	CPQ	COptiDICE	VOCE	CDT	TREBI	FISOR	CCAC(ours)
Run	Reward ↑	0.55 ± 0.44	1.51 ± 0.91	1.88 ± 1.03	0.95 ± 0.03	1.38 ± 0.5	1.65 ± 1.07	0.99 ± 0.02	0.82 ± 0.19	0.74 ± 0.08	0.96 ± 0.03
	Cost ↓	5.23 ± 6.26	19.85 ± 12.76	23.56±7.99	1.92 ± 2.66	6.27 ± 6.29	9.35 ± 8.95	1.34 ± 0.74	2.12 ± 2.36	$0.54{\scriptstyle\pm1.90}$	0.23 ± 0.27
Circle	Reward ↑	0.4±0.33	1.11±0.31	1.13±0.21	0.64 ± 0.42	0.63 ± 0.25	0.06±0.11	0.91±0.17	0.43±0.25	0.27 ± 0.18	0.79 ± 0.24
	Cost ↓	6.88 ± 9.15	15.61 ± 6.1	13.19 ± 6.18	3.73 ± 6.43	9.82 ± 10.57	10.05 ± 15.53	2.58 ± 2.49	3.53 ± 8.26	$0.17{\scriptstyle\pm0.76}$	0.17 ± 0.79
Velocity	Reward ↑	0.44 ± 0.43	0.78±0.37	0.18 ± 0.8	0.41 ± 1.15	0.65±0.36	-0.41±0.44	0.88 ± 0.24	0.45±0.24	0.47±0.26	0.86±0.2
	Cost ↓	2.08 ± 3.23	$27.26{\scriptstyle\pm29.75}$	20.1 ± 25.76	35.18 ± 44.66	6.94 ± 7.22	0.0±0.0	$2.91{\scriptstyle\pm2.87}$	1.07 ± 2.52	$0.08{\scriptstyle\pm0.27}$	$0.38{\scriptstyle\pm0.2}$
Average	Reward ↑	0.45±0.4	1.09±0.58	0.98±0.93	0.63±0.75	0.8±0.47	0.26±0.96	0.91±0.19	0.51±0.28	0.44±0.27	0.85±0.21
	Cost ↓	4.91±7.33	$20.44{\scriptstyle\pm19.33}$	17.8 ± 16.46	$13.81{\scriptstyle\pm30.22}$	$8.07{\scriptstyle\pm8.85}$	6.54 ± 12.1	2.41 ± 2.45	$2.41{\scriptstyle\pm6.0}$	$0.22{\scriptstyle\pm1.05}$	$0.25{\scriptstyle\pm0.56}$

Bold: safe agents with (normalized) cost smaller than 1. Blue: safe agents with the highest reward

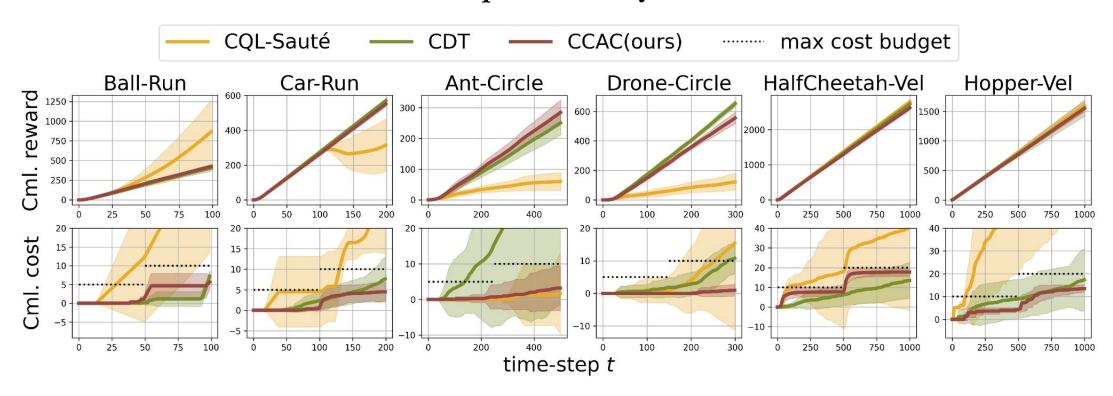
Results

• CCAC can achieve zero-shot adaptation to different (even unseen) cost thresholds



Results

CCAC can achieve zero-shot adaptation to dynamic cost thresholds



Summary

- A novel OSRL method CCAC:
 - Handle varying constraint thresholds
 - Model the distribution of states and actions based on constraint thresholds
 - Overestimate the cost critics of OOD state-action pairs
- CCAC is able to learn safe, high-reward and adaptable policies
- Code is available at https://github.com/BU-DEPEND-Lab/CCAC

