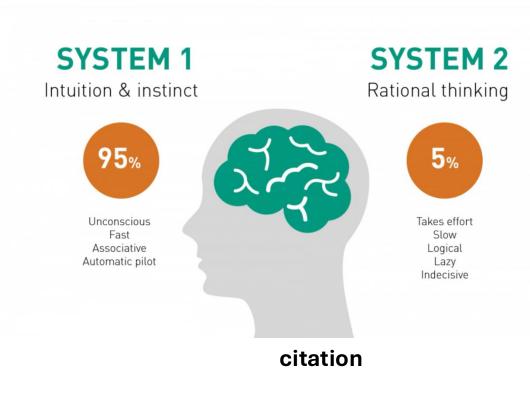
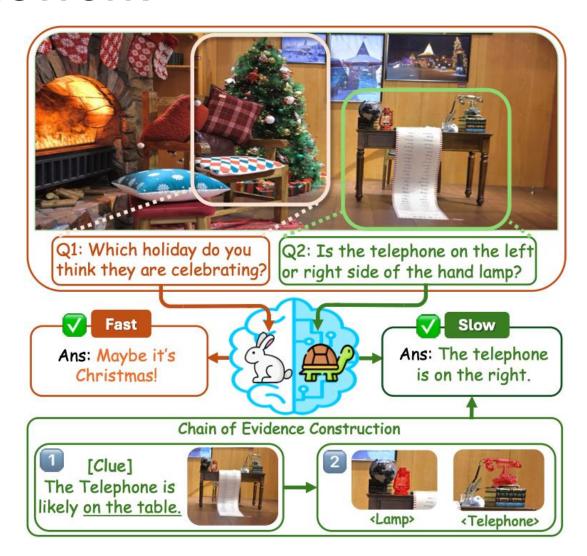
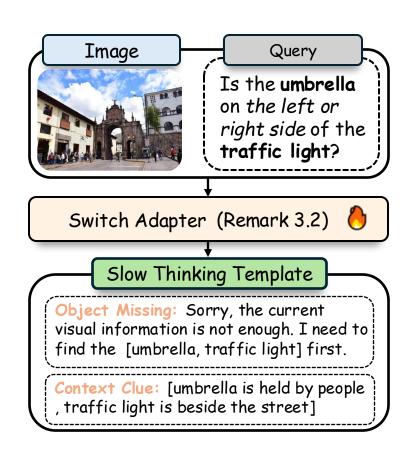
Visual Agents as Fast and Slow Thinkers

Guangyan Sun*, Mingyu Jin*, Zhenting Wang, Cheng-Long Wang, Siqi Ma, Qifan Wang, Tong Geng, Ying Nian Wu, Yongfeng Zhang, Dongfang Liu **ICLR 2025**



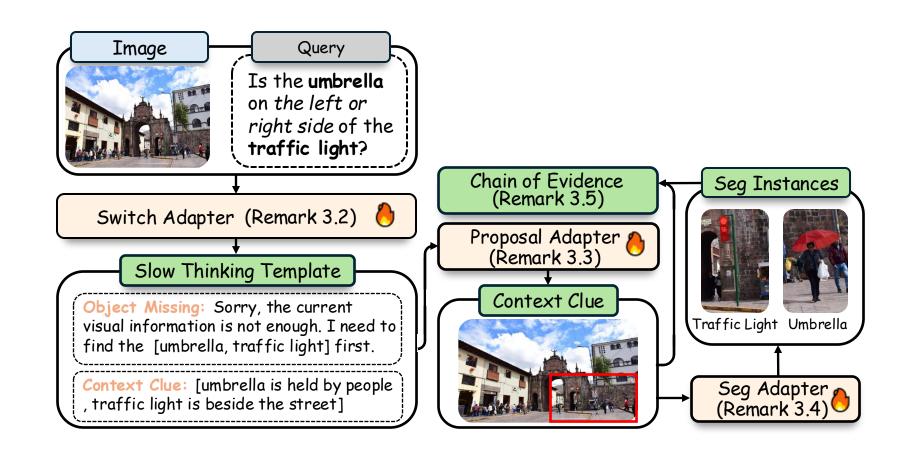


Background

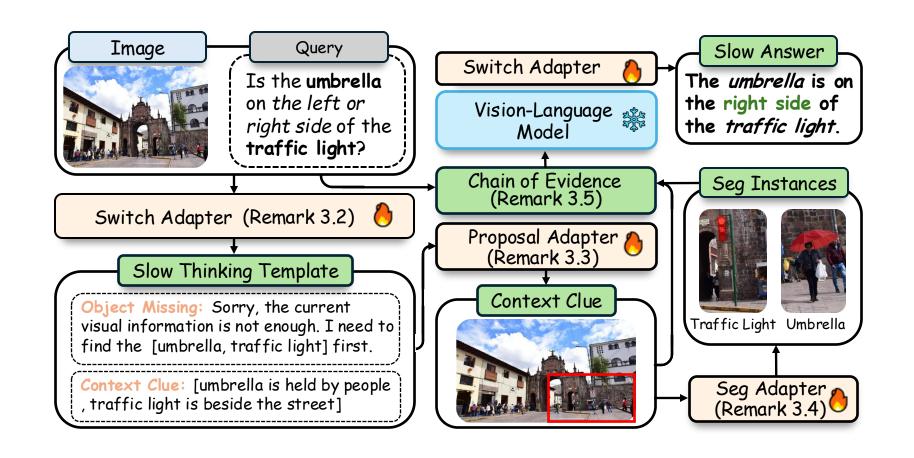

- Achieving human-like intelligence requires System 1 (fast, intuitive) and System 2 (slow, analytical) thinking.
- Current Visual Agents Issues:
 - Over-reliance on heuristic reasoning (System 1)
 - Lack of explicit slow-thinking mechanisms (System 2)
 - Hallucinations and overconfidence in responses
- How can we enable visual agents to adaptively switch between System 1 & 2?

FaST Framework

FaST Framework for Slow Thinking Mode



Negative Data for Slow Thinking


100k of (image, question, answer)

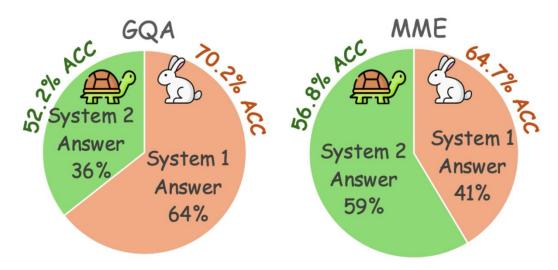
- 1. Objects too small
- 2. Complex reasoning required

FaST Framework for Slow Thinking Mode

FaST Framework for Slow Thinking Mode

Benchmark Results

Method	LLM	VQA Datasets				Multimodal Benchmarks			
		VQA^{v2}	GQA	VQA^T	SQA^I	POPE	MME	SEED	MM-Vet
BLIP-2[ICML23]	Vicuna-13B	65.0	32.3	42.5	61.0	85.3	1293.8	46.4	22.4
$InstructBLIP \hbox{\scriptsize [NeurIPS24]}$	Vicuna-13B	-	49.5	50.7	63.1	78.9	1212.8	53.4	25.6
Qwen-VL-Chat[arXiv23]	Qwen-7B	78.2	57.5	61.5	68.2	-	1487.5	58.2	-
mPLUG-Owl2 [CVPR24]	LLaMA-7B	79.4	56.1	58.2	68.7	-	1450.2	61.6	36.2
Monkey[CVPR24]	Qwen-7B	80.3	60.7	-	69.4	67.6	-	-	-
$LLaVA-v1.5 {\tiny [CVPR24]}$	Vicuna-7B	78.5	62.0	58.2	66.8	85.9	<u>1510.7</u>	58.6	30.5
Chain of Spot [arXiv24]	Vicuna-7B	80.7	63.7	60.9	68.2	86.4	1501.1	59.7	30.8
$V*_{[CVPR24]}$	Vicuna-7B	-	-	-	-	82.4	1128.9	41.7	27.7
Visual CoT[arXiv24]	Vicuna-7B	-	63.1	77.5	-	-	-	-	-
FAST (Ours)	Vicuna-7B	80.8	63.8	60.7	68.9	86.4	1517.4	60.1	31.0
Δ (vs LLaVA-v1.5)	Vicuna-7B	+2.3	+1.8	+ 2.5	+2.1	+0.4	+6.7	+ 1.5	+ 0.5


Main Results on VQA and Multimodal Benchmark

	Refe	rring Segmen	Reasoning Segmentation		
Method	refCOCO	refCOCO+	refCOCOg	Reas	oSeg
	CIoU	CIoU	CIoU	CIoU	GIoU
LAVT[CVPR22]	72.7	62.1	61.2	-	-
OVSeg[CVPR23]	-	-	-	28.5	18.6
GRES[CVPR23]	<u>73.8</u>	66.0	65.0	22.4	19.9
X-Decoder[CVPR23]	-	-	64.6	22.6	17.9
SEEM[NeurIPS24]	-	-	65.7	25.5	21.2
LISA-7B[CVPR24]	74.1	62.4	<u>66.4</u>	<u>44.4</u>	<u>46.0</u>
LLaVA w Seg Adapter	70.8	57.5	64.0	43.0	41.0
FAST (Ours)	73.3	<u>64.4</u>	67.0	47.6	48.7

Main Results on Referring and Reasoning Segmentation

Analysis of Switch Adapter

- Impact of Switch Adapter (MME)
 - 41% resolved with System 1
 - 59% need System 2 for deeper reasoning
 - High Accuracy for Easy Problems
 - Better Accuracy with System 2 Mode

System 1 Mode Analysis. We investigate the system switching ratio, along with fast thinking performance on easy or hard queries defined by the switch adapter.

Conclusion

- FaST is a novel framework integrating System 1 and 2 Thinking for Visual Agents
- Superior performance across multiple benchmarks
- Transparent decision-making through a chain of evidence construction

Paper

Code