Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers

Yuchen Liang[†], Peizhong Ju[‡], Yingbin Liang[†], Ness Shroff[†]

[†]The Ohio State University [‡]University of Kentucky

Presented at ICLR 2025

Overview

- Introduction
- Q General Score-Mismatched DDPM Samplers
- 3 Bias-Optimal Zero-shot Conditional Sampler
- 4 Conclusion

Background on Diffusion Models

- Problem: Generate samples from a complex distribution (e.g., images)
- ▶ Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020)

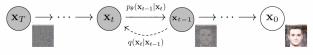


Figure 2: The directed graphical model considered in this work.

- 1. Forward process Q: $x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 \alpha_t} w_t$, for **training**
 - Train for posterior-mean (with score-matching)

$$\widehat{\mu}_t(x_t) pprox \mathbb{E}_{Q_{t-1|t}}[X_{t-1}|x_t] = \frac{1}{\sqrt{\alpha_t}} x_t + \frac{1-\alpha_t}{\sqrt{\alpha_t}} \nabla \log q_t(x_t)$$

2. Reverse process \widehat{P} : $x_{t-1} = \widehat{\mu}_t(x_t) + \sqrt{\frac{1-\alpha_t}{\alpha_t}}z_t$, for **sampling**

Score-mismatch and Zero-shot Samplers

- Three different dists: Target, Training, Sampling
 - ldeally, matched-score: Target = Training (= Q_0)
 - ▶ In practice, (usually) Target \neq Training
 - E.g., distributed sensors, privacy concerns

Score-mismatch and Zero-shot Samplers

- Three different dists: Target, Training, Sampling
 - ldeally, matched-score: Target = Training (= Q_0)
 - ▶ In practice, (usually) Target \neq Training
 - ► E.g., distributed sensors, privacy concerns
- Interesting example: Conditional Samplers
 - ► Target: $Q_{0|y}$ (with y = conditioned img) (e.g., image SR)
- One common solution: Classifier Guidance (& CFG)

$$abla_x \log q_{t|y}(x_t|y) =
abla_x \log q_t(x_t) +
abla_x \log q_{y|t}(y|x_t)$$

- Pro: No mismatch!
- ► Con: $\nabla_x \log q_{v|t}(y|x_t)$ requires extra training...
- ▶ Alternative: **Zero-shot** samplers, no extra training, yet mismatched

Main Questions

- 1. How does **score mismatch** affect theoretical performance?
- 2. What does it imply for **zero-shot** conditional samplers?

Overview

- Introduction
- 2 General Score-Mismatched DDPM Samplers
- Bias-Optimal Zero-shot Conditional Sampler
- 4 Conclusion

General Mismatch: Main Result

- ► Target: \tilde{Q}_t ; Sampling: P_t (\hat{P}_t if approx); Training: Q_t
- lacksquare (Score-)mismatch: $\Delta_t(x_t) := \frac{\sqrt{lpha_t}}{1-lpha_t} (\mathbb{E}_{ ilde{Q}_{t-1|t}} \mathbb{E}_{P_{t-1|t}})[X_{t-1}|x_t]$
- List of Assumptions:
 - 1. Finite-var targets
 - 2. Posterior-mean est (for zero-shot: unconditional score est)
 - 3. Regular target derivatives
 - 4. Bounded mismatch (in moments)
- ► Theorem 1: Under [A1]–[A4],

$$ext{KL}(ilde{Q}_0 \| \widehat{P}_0) \lesssim \mathcal{W}_{\mathsf{oracle}} + \mathcal{W}_{\mathsf{vanish}} + \mathcal{W}_{\mathsf{bias}}$$

- $\mathcal{W}_{\text{oracle}} = \tilde{\mathcal{Q}}(T^{-1})$ is error with no mismatch, i.e., $\Delta_t \equiv 0$;
- $ightharpoonup \mathcal{W}_{\text{vanish}} = \ddot{\mathcal{O}}(\mathcal{T}^{-1})$ captures vanishing effect of mismatch;
- \triangleright $W_{\text{bias}} = O(1)$ captures the **asymptotic bias**
- ▶ This bias is a weighted-sum of Fisher divergence, usually linear in *d*

Overview

- Introduction
- Quantification of the second secon
- 3 Bias-Optimal Zero-shot Conditional Sampler
- 4 Conclusion

Zero-shot Sampler: Problem Setup

- ▶ **Linear** conditional model: $y = Hx_0 + n$, with $n \sim \mathcal{N}(0, \sigma_y^2 I_p)$
- ▶ Zero-shot sampler: $\mu_{t,y}(x_t) = \frac{1}{\sqrt{\alpha_t}} (x_t + (1 \alpha_t)g_{t,y}(x_t))$ with

$$g_{t,y} := (I_d - H^\dagger H) \nabla \log q_t(x_t) + f_{t,y}(x_t)$$

such that $(I_d - H^{\dagger}H)f_{t,y}(x) \equiv 0$.

Many applications admit such $f_{t,y}$: CCDF (Chung et al., 2022), DDNM (Wang et al., 2023), etc.

Bias-Optimal Zero-shot Sampler

Theorem 3: Fix $t \ge 1$ and y. Define the forward variance $\Sigma_{t|0,y} := \bar{\alpha}_t \sigma_y^2 H^{\dagger} (H^{\dagger})^{\intercal} + (1 - \bar{\alpha}_t) I_d$. If

$$f_{t,y}^*(x_t) := \Sigma_{t|0,y}^{-1} \left(\sqrt{\bar{\alpha}_t} H^\dagger y - H^\dagger H x_t \right),$$

then

$$f_{t,y}^* \in \mathop{\arg\min}_{f_{t,y}: (I_d - H^\dagger H) f_{t,y} \equiv 0} \left\| \Delta_{t,y} \right\|^2, \quad Q_{t|y} \text{--almost surely}.$$

Bias-Optimal Zero-shot Sampler

Theorem 3: Fix $t \ge 1$ and y. Define the forward variance $\Sigma_{t|0,y} := \bar{\alpha}_t \sigma_y^2 H^{\dagger} (H^{\dagger})^{\intercal} + (1 - \bar{\alpha}_t) I_d$. If

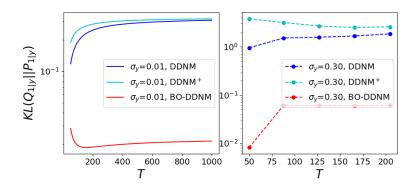
$$f_{t,y}^*(x_t) := \Sigma_{t|0,y}^{-1} \left(\sqrt{\bar{\alpha}_t} H^\dagger y - H^\dagger H x_t \right),$$

then

$$f_{t,y}^* \in \mathop{\arg\min}_{f_{t,y}: (I_d - H^\dagger H) f_{t,y} \equiv 0} \left\| \Delta_{t,y} \right\|^2, \quad Q_{t|y} \text{--almost surely}.$$

- We call $\mu_{t,y}$ with $f_{t,y}^*$ Bias-Optimal (BO) DDNM sampler
- ▶ If $\sigma_y^2 = 0$, then BO-DDNM = DDNM
- Detailed parameter dependency for Gaussian mixture (see paper)

Numerical Performance: BO-DDNM vs. DDNM



► Left: Gaussian; Right: Gaussian mixture

Conclusion

- ► First non-asymptotic analysis for score-mismatched DDPMs
- Bias-optimal zero-shot sampler for linear conditional models
- System dependencies (d and y) of BO-DDNM