Relax and Merge: A Simple Yet Effective Framework for Solving Fair k-means and k-sparse Wasserstein Barycenter Problems

Shihong Song Guanlin Mo Hu Ding

shihongsong@mail.ustc.edu.cn University of Science and Technology of China

The Thirteenth International Conference on Learning Representations

Song, Mo and Ding (USTC) Relax and Merge ICLR 2025 1/12

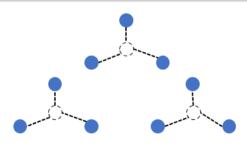
k-means Objective

Problem (Vanilla Euclidean (Continues) k-means)

Input: a set of clients (data points) $P = \{p_1, p_2, \dots, p_n\}$ in Euclidean space \mathbb{R}^d .

Objective: to find a (facility) set $S \subseteq \mathbb{R}^d$ with |S| = k and an assignment map $\sigma : P \to S$ s.t.

$$\min_{S,\sigma} \mathsf{Cost}(S,\sigma) := \sum_{i=1}^n \|p_i - \sigma(p_i)\|^2 \tag{1}$$



Song, Mo and Ding (USTC)

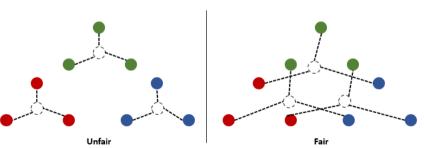
Fair k-means

- Suppose every client is **colored**, the fairness constraint requires the **balance** of colors in each cluster.
- Formally, if $P^{(i)}$ is the client set of *i*-th colored group, $C_j \leftarrow \{p | \sigma(p) = s_j\}$ and m is the number of colors, then the objective is

$$\min_{S,\sigma} \operatorname{Cost}(S,\sigma) = \sum_{i=1}^{n} \|p_i - \sigma(p_i)\|^2$$

$$s.t.\beta_i |C_i| \le |C_i \cap P^{(i)}| \le \alpha_i |C_i| \quad \forall i \in [m], \forall i \in [k].$$
(2)

3/12



Song, Mo and Ding (USTC) Relax and Merge ICLR 2025

Outline of Our algorithm

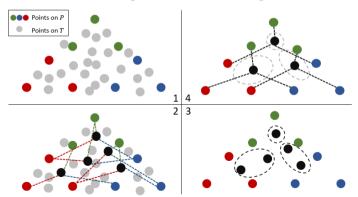
We split the algorithms into three phases:

- finding the facility locations;
- ② calculating the fractional assignment (linear programming);
- **3** rounding the fractional assignment to integral.

Song, Mo and Ding (USTC) Relax and Merge ICLR 2025

Relax and Merge

- Firstly, we relax the constraint of k facilities, *i.e.*, we allow more than k facilities to be chosen. The chosen point set is denoted by T.
- ullet Secondly, we use linear programming to calculate an assignment of T.
- Thirdly, we use vanilla k-means algorithm on T to merge the solution to k facilities.

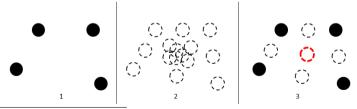


Construction of T

How to construct T?

- Ideally, we hope T could cover all the centroid of the subsets of clients.
- However, the number of subsets of clients could be large as 2^n .
- By introducing some small error factor $(1 + \epsilon)$, the size of centroid set could be reduced to $O(n\epsilon^{-d}\log(1/\epsilon))^1$.

We use $(1 + \epsilon)$ -approximate centroid set as the set T.



¹ Jiří Matoušek. "On approximate geometric k-clustering". In: *Discrete & Computational Geometry* 24.1 (2000), pp. 61–84.

Theoretical Guarantee

Claim

"Relax and Merge" could return a feasible fractional solution for fair k-means.

Theorem (Theorem 1 (informal))

Given an instance of fair k-means and a ρ -approximate vanilla k-means clustering algorithm, there exists an algorithm that can return a fractional solution whose cost is at most $(1+4\rho+\epsilon)OPT$.

Theorem (2(informal))

"Relax and Merge" algorithm returns $(1+4\rho+\epsilon)$ -approximate solution for k-sparse Wasserstein Barycenter problem.

7/12

Song, Mo and Ding (USTC) Relax and Merge ICLR 2025

Rounding Algorithm

Note

If we know the upper and lower bound in every cluster of each colored group, then we can use Minimum-Cost Circulation Flow algorithm to obtain the integral solution^a to solve integral assignment perfectly!

^a Jack Edmonds and Richard M Karp. "Theoretical improvements in algorithmic efficiency for network flow problems". In: *Journal of the ACM (JACM)* 19.2 (1972), pp. 248–264.

The main idea of rounding:

- **1** Use linear programming to estimate the size of every cluster, e.g., $|\tilde{C}_j|$.
- ② For each cluster C_j , the size bounds for q-th colored client group is set to $\lfloor \beta_q | \tilde{C}_j |, \alpha_q | \tilde{C}_j | \rfloor$ approximately.
- Use Minimum-Cost Circulation Flow algorithm to obtain the integral solution.

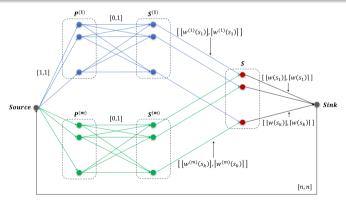
◆ロト→□ト→ミト→ミ りへで

8/12

Rounding Algorithm

Lemma (4)

There exists an algorithm that can round a fractional solution of (α, β) -fair k-means to integral with at most 2-violation while the cost does not increase.



Strictly Fair k-means

- When $\alpha_i = \beta_i = \frac{|P^{(i)}|}{|P|}$, we call it **strictly** fair *k*-means.
- We assume each colored group has the same size, otherwise the instance is infeasible.

High Level idea:

- Decompose the dataset to fairlets (fairlet is a collection composed of points, with each point being of a unique color, and the collection encompasses all colors).
- 2 Run vanilla k-means for fairlets.

Theorem (3)

Our algorithm returns a $(2+6\rho)$ -approximate integral solution of strictly fair k-means.

<□▶<□▷<=><□▷<=><□▷<=><□▷<=><□▷<=><□▷<=><□▷<=><□▷<=><□▷<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□○<=><□

Fairlet and Fairlet Decomposition

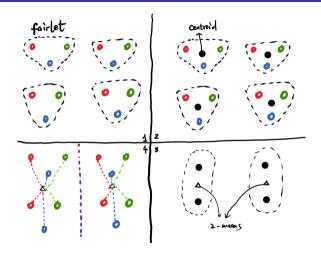


Figure: An example of strictly Fair 2-means

Song, Mo and Ding (USTC)

The End

Thanks.