A General Framework for Off-Policy Learning with Partially-Observed Reward (ICLR 2025)

Rikiya Takehi¹, Masahiro Asami², Kosuke Kawakami², Yuta Saito³

¹ Waseda University, ² Hakuhodo Technologies Inc., ³ Cornell University

Off-Policy Learning in Contextual Bandits

Context $x \sim p(x)$ (e.g., user info)

Action $a \sim \pi(a|x)$ (e.g., product, movies)

decision-making policy

Target Reward $\, r \sim p(r|x,a) \,$ (e.g., ratings)

We aim to learn a policy π_{θ} using only logged bandit data:

$$\mathcal{D} := \{(x_i, a_i, r_i)\}_{i=1}^n \ \sim \pi_0$$
 (old) $\overline{\log}$ policy

Goal of Off-Policy Learning

We take Policy Gradient (PG) iterations to maximize target reward r

$$heta_{t+1} \leftarrow heta_t + rac{
abla_{ heta} V(\pi_{ heta})}{ ext{Policy Gradient (PG)}}$$

$$egin{aligned} \overline{
abla_{ heta}V(\pi_{ heta})} \coloneqq \mathbb{E}_{p(x)\pi_{ heta}(a|x)} \left[\underline{q(x,a)}
abla_{ heta} \log \pi_{ heta}(a|x)
ight] \ \mathbb{E}[r|x,a] \end{aligned}$$

We aim to accurately estimate the policy gradient using dataset $\,\mathcal{D}\,$

Problem: rewards are often only partially observed

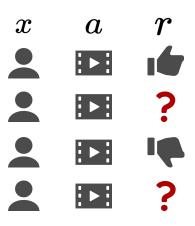
On various platforms, (target) rewards are often partially observed due to missing data, delayed observations, data fusion, multi-stage rewards,....

e.g., explicit ratings in streaming platforms, conversion signals in e-commerce platforms

Problem: rewards are often only partially observed

On various platforms, (target) rewards are often partially observed due to missing data, delayed observations, data fusion, multi-stage rewards,....

e.g., explicit ratings in streaming platforms, conversion signals in e-commerce platforms



Dataset with partial rewards:

$$\mathcal{D} := \{x_i, a_i, oldsymbol{o}_i, r_i\}$$

Reward observation indicator

$$o_i = egin{cases} exttt{1, if} & oldsymbol{r}_i ext{ is captured} \ exttt{0, if} & oldsymbol{r}_i ext{ is not captured} \end{cases}$$

Existing Solution 1: Only use Partial Target Rewards

$$abla_{ heta}\hat{V}_{ ext{r-IPS}}(\pi_{ heta}; \mathcal{D}) = rac{1}{n} \sum_{i=1}^{n} rac{o_{i}}{p(o_{i}|x_{i})} rac{\pi_{ heta}(a_{i}|x_{i})}{\pi_{0}(a_{i}|x_{i})} r_{i}
abla_{ heta} \log \pi_{ heta}(a_{i}|x_{i}) = rac{1}{n} \sum_{i=1}^{n} rac{o_{i}}{p(o_{i}|x_{i})} rac{\sigma_{0}(a_{i}|x_{i})}{\pi_{0}(a_{i}|x_{i})} r_{i}
address observation bias$$

Unbiased but high variance

due to small useable data size

Existing Solution 1: Only use Partial Target Rewards

$$abla_{ heta}\hat{V}_{ ext{r-IPS}}(\pi_{ heta}; \mathcal{D}) = rac{1}{n} \sum_{i=1}^{n} rac{o_{i}}{p(o_{i}|x_{i})} rac{\pi_{ heta}(a_{i}|x_{i})}{\pi_{0}(a_{i}|x_{i})} r_{i}
abla_{ heta} \log \pi_{ heta}(a_{i}|x_{i}) = rac{1}{n} \sum_{i=1}^{n} rac{o_{i}}{p(o_{i}|x_{i})} rac{\sigma_{0}(a_{i}|x_{i})}{\pi_{0}(a_{i}|x_{i})} r_{i}
abla_{ heta} \log \pi_{ heta}(a_{i}|x_{i})$$

Unbiased but high variance

due to small useable data size

Main motivation of our study

How can we perform effective OPL given sparsity in reward observation?

Use of secondary rewards?

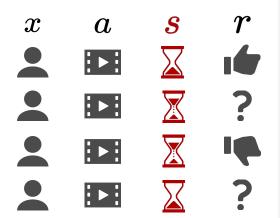
In many real-life scenarios, we have densely-observed secondary rewards S.

e.g., watch time, dwell time, clicks, ...

Use of secondary rewards?

In many real-life scenarios, we have densely-observed secondary rewards s.

e.g., watch time, dwell time, clicks, ...



$$\mathcal{D} := \{x_i, a_i, oldsymbol{s_i}, o_i, r_i\}$$

Secondary rewards are:

- Densely observed
- Little correlation with target reward

Existing Solution 2: Only use Secondary Rewards

$$egin{aligned}
abla_{ heta} \hat{V}_{ ext{s-IPS}}(\pi_{ heta}; \mathcal{D}) &= rac{1}{n} \sum_{i=1}^n rac{\pi_{ heta}(a_i|x_i)}{\pi_0(a_i|x_i)} F(s_i)
abla_{ heta} \log \pi_{ heta}(a_i|x_i) \end{aligned}$$

 $F(s_i)$: some aggregation function to imitate the target reward

Lower variance but **high bias**due to imperfect correlation with objective

A new PG estimator that uses both types of rewards

Unbiased & lower-variance estimation of target reward PG

$$egin{aligned}
abla_{ heta} \hat{V}_r(\pi_{ heta}; \mathcal{D}) &:= rac{1}{n} \sum_{i=1}^n \left\{ \mathbb{E}_{a \sim \pi_{ heta}(a|x_i)} \left[\hat{q}(x_i, a)
abla_{ heta} \log \pi_{ heta}(a|x_i)
ight] \ &+ rac{\pi_{ heta}(a_i|x_i)}{\pi_0(a_i|x_i)} \left(\hat{q}(x_i, a_i, s_i) - \hat{q}(x_i, a_i)
ight)
abla_{ heta} \log \pi_{ heta}(a_i|x_i) \ &+ rac{o_i}{p(o_i|x_i)} rac{\pi_{ heta}(a_i|x_i)}{\pi_0(a_i|x_i)} \left(r_i - \hat{q}(x_i, a_i, s_i)
ight)
abla_{ heta} \log \pi_{ heta}(a_i|x_i) \ \hat{q}(\cdot) : \text{regression model} \end{aligned}$$

No bias & low variance by the additional use of secondary rewards.

Our Idea: Lower variance even further!

HyPeR

$$\begin{array}{ll} \nabla_{\theta} \hat{V}_{\mathrm{HyPeR}}(\pi_{\theta}; \mathcal{D}, \gamma) = & \text{weight optimized from data} \\ & \left(1 - \gamma\right) \nabla_{\theta} \hat{V}_r(\pi_{\theta}; \mathcal{D}) + \gamma \nabla_{\theta} \hat{V}_s(\pi_{\theta}; \mathcal{D}) \\ & \text{target reward maximization} & \text{secondary reward maximization} \\ & & \underline{\text{unbiased \& high variance}} & \underline{\text{high bias \& low variance}} \end{array}$$

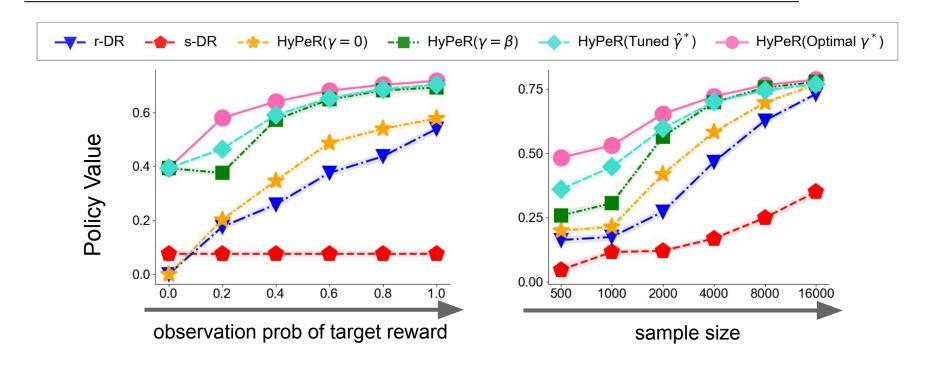
We lower variance by leveraging $\nabla_{\theta} \hat{V}_s(\pi_{\theta}; \mathcal{D})$, at the cost of introducing bias.

Summary of Theoretical Findings

- HyPeR can lower variance while being unbiased.
- We find a general concept that it is often better to strategically introduce bias when in a multi-reward setting.

 We provide a data-driven method for optimizing the weight for a bias-variance balance.

Strong Empirical Performance



HyPeR is effective even when target rewards are sparse

Summary

- We introduce & formulate the problem of OPL with partial observations of rewards.
- Our HyPeR leverages secondary rewards to enable effective OPL.
- Other interesting theoretical & empirical results are in the paper!