

SynCamMaster: Synchronizing Multi-Camera Video Generation from Diverse Viewpoints

Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Zuozhu Liu, Haoji Hu, Pengfei Wan, Di Zhang

jianhongbai@zju.edu.cn

April, 2025 Jianhong Bai

Overview

TL; DR:

SynCamMaster generates multiple synchronized videos of the same dynamic scene.

Input and Output:

- > 1 text prompt + N camera parameters
- > N synchronized videos.

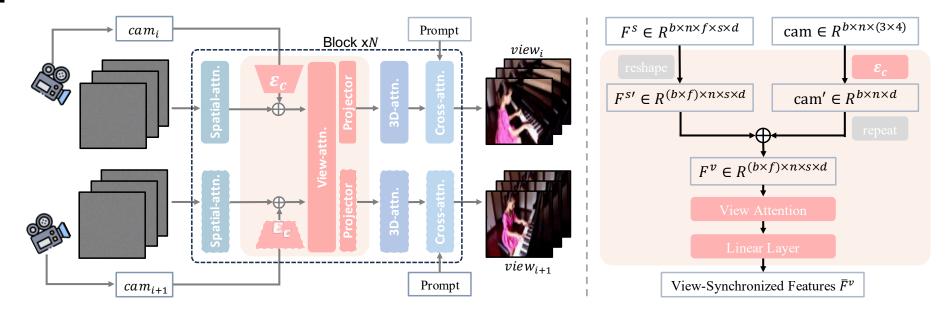
Main Features:

- ✓ Multi-camera synchronized video generation.
- ✓ Enable synthesis from diverse viewpoints.
- ✓ A simple and efficient module on top of pretrained text-to-video models.

SynCamVideo Dataset:

Release a multi-camera synchronized video dataset rendered with Unreal Engine 5.

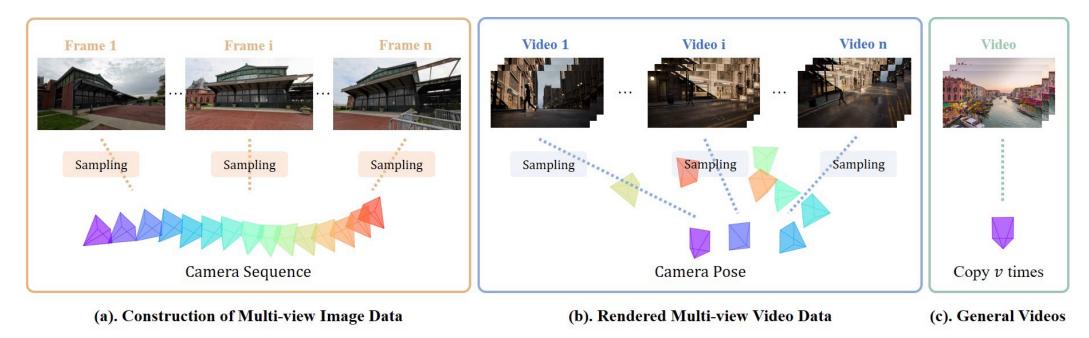
Close-Up and Wide Shot


60° in Azimuth+30° in Elevation

Background & Motivation

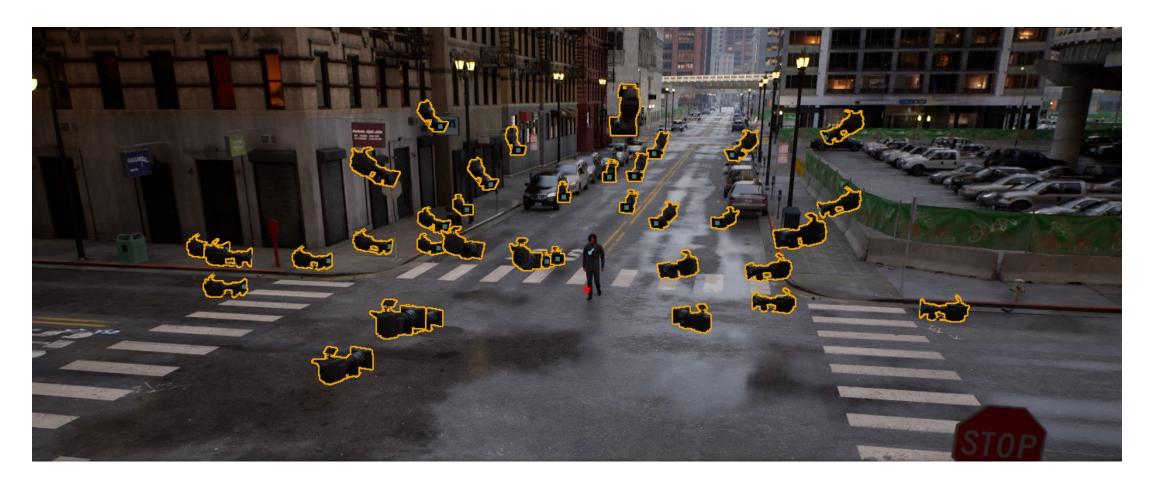
- Multi-View Video Generation.
 - Existing works primarily focus on 4D object generation or generation on a specific domain (e.g., autonomous driving).
 - This paper explores how to achieve open-domain multicamera video generation.
- Why Multi-View Open-Domain Generation?
 - In filmmaking, switching back and forth between multiple cameras is commonly used to create a storytelling atmosphere.
 - It can be used as a data generator for various downstream tasks (e.g., robotic manipulation, 3D human pose estimation).

Method

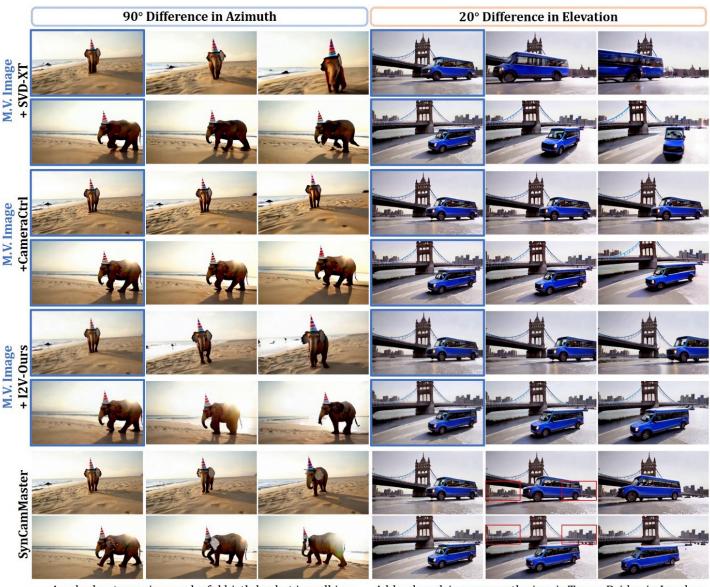

(a) Overview of SynCamMaster

- (b) Multi-View Synchronization Module
- Based on the pre-trained text-to-video model, two components are newly introduced:
 - The camera encoder projects the camera extrinsics into the embedding space.
 - <u>The multi-view synchronization module</u>, as plugged in each TransformerBlock, modulates multi-view features under the guidance of camera parameters.

$$\mathbf{F}_i^v = \mathbf{F}_i^s + \mathcal{E}_c(\mathsf{cam}^i), \tag{5}$$


$$\overline{\mathbf{F}}_{i}^{v} = \mathbf{F}_{i}^{v} + \text{projector}(\text{attn_view}(\mathbf{F}_{1}^{v}, \dots, \mathbf{F}_{n}^{v})[i]), \tag{6}$$

Training Data


- Due to the scarcity of available multi-view videos, we used a hybrid training set to enhance the model's robustness and improve the visual quality of the generated videos, the training set is composed of:
 - Multi-view image data from videos with camera movements.
 - Multi-view video data from the rendered SynCamVideo Dataset.
 - General video data from the internet.

SynCamVideo Dataset

- Multi-Camera Synchronized Videos + Corresponding Camera Parameters
- Rendered with UnrealEngine 5

Results

An elephant wearing a colorful birthday hat is walking along the sandy beach.

A blue bus drives across the iconic Tower Bridge in London.

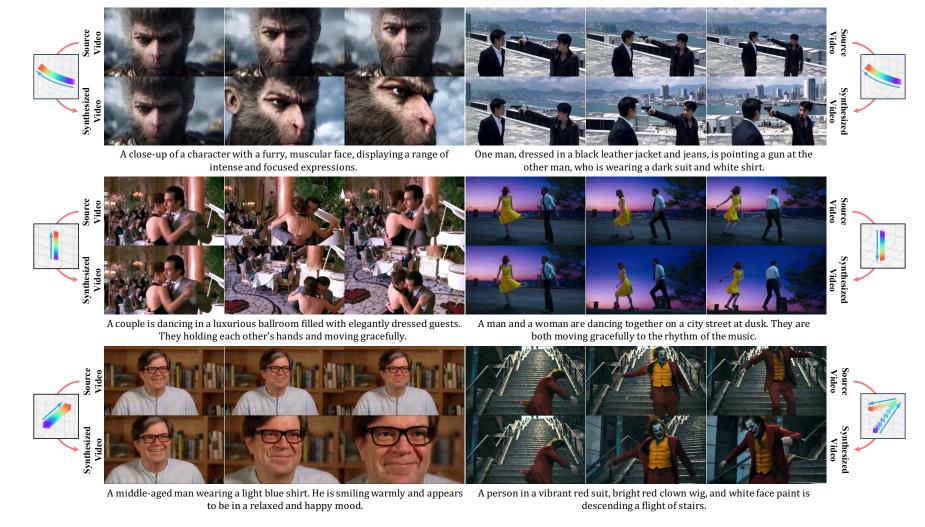
Results

Table 1: Quantitative comparison with state-of-the-art methods.

	Visual Quality			View S	View Synchronization		
Method	FID ↓	FVD↓	CLIP-T↑	CLIP-F↑	Mat. Pix.(K)	↑ FVD-V ↓	CLIP-V ↑
M.V. Image + SVD-XT	137.3	1755	-	97.56	150.4	1742	89.14
M.V. Image + CameraCtrl	152.8	2203	-	98.32	172.9	1661	89.33
M.V. Image + I2V-Ours	113.1	1376	33.48	99.27	116.8	1930	90.01
SynCamMaster	116.7	1401	33.40	99.36	527.1	1470	93.71

Table 2: Quantitative ablation on the joint training strategy.

	Visual Quality			View Synchronization			ion
Method	FID ↓	FVD↓	CLIP-T↑	CLIP-F↑	Mat. Pix.(K) ↑	FVD-V↓	CLIP-V ↑
Multi-View Video	149.9	1971	30.97	99.37	460.5	1668	89.68
+ Multi-View Image + General Video + Both	121.5 122.4 116.7	1655 1608 1401	33.02 32.54 33.40	99.36 99.38 99.36	533.0 471.9 527.1	1482 1514 1470	93.15 90.12 93.71


Table 3: Results of novel view video synthesis.

Setting	LPIPS ↓	PSNR ↑	SSIM ↑
$s_V = 1.2, s_T = 5.0$	0.4899	16.29	0.4754
$s_V = 1.2, s_T = 7.5$	0.4901	16.60	0.4783
$s_V = 1.8, s_T = 7.5$	0.4761	16.47	0.4935
$s_V = 2.5, s_T = 7.5$	0.5022	14.55	0.4667

Table 4: Accuracy of camera control.

Method	RotErr ↓	TransErr↓
M.V. Image + SVD-XT	0.25	0.72
M.V. Image + CameraCtrl	0.16	0.67
M.V. Image + I2V-Ours	0.26	0.80
SynCamMaster	0.12	0.58

Subsequent Work: ReCamMaster

- Input: source video + target camera trajectory.
- Output: Video with the novel camera trajectory.

Take Home Messages

- We propose SynCamMaster to synthesize multi-camera videos from the text prompt and camera extrinsic.
- We release a multi-camera synchronized video dataset rendered with Unreal Engine 5.
- Our subsequent work, ReCamMaster, can recapture an input video using novel camera trajectories.
- For more information:

SynCamMaster Project Page

ReCamMaster Project Page

Thanks for your attention!