Scientific Equation Discovery via Evolutionary Search with Large Language Models

*Parshin Shojaee

*Kazem Meidani

Shashank Gupta

Amir Barati Farimani

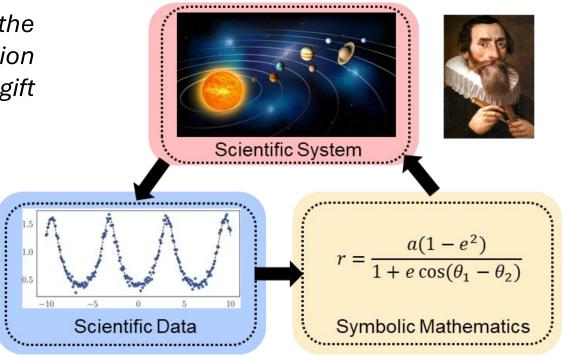
Chandan K. Reddy

ICLR 2025 Oral Presentation

Unreasonable Effectiveness of Mathematics

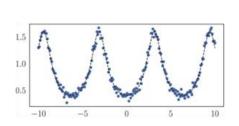
"The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve."

Eugene Wigner -- The Unreasonable
Effectiveness of Mathematics in the
Natural Sciences



Scientific Discovery

Mathematical Equations help us *understand*, *build upon*, *predict*, and *control* scientific systems.

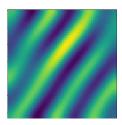


$$r = \frac{a(1 - e^2)}{1 + e\cos(\theta_1 - \theta_2)}$$

Functional Relations

$$\begin{split} \frac{d\dot{\theta}}{dt} &= \frac{Mg\sin\theta + mg\sin\theta - ml\dot{\theta}\sin\theta\cos\theta}{ML + ml\sin^2\theta} \\ \frac{d\dot{s}}{dt} &= \frac{mL\dot{\theta}^2\sin\theta - mg\sin\theta\cos\theta}{M + m\sin^2\theta} \end{split}$$

Dynamical Systems (ODEs)



$$\frac{\partial u}{\partial t} = \nabla \cdot (D\nabla u) - \nabla \cdot (vu) + R$$

Partial Differential Equations (PDEs)

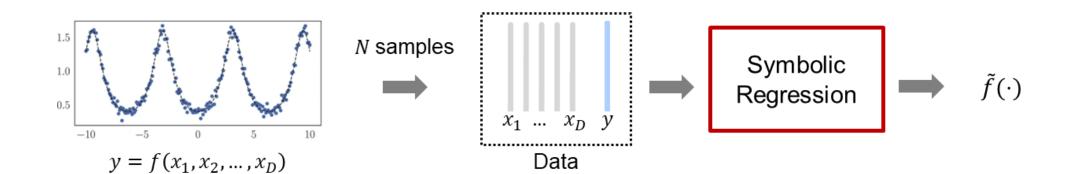
Equation Discovery | Definition

Given a dataset $(X_i, y_i)_{i \leq N}$, where each point $X_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, find a **mathematical** expression $\tilde{f}: \mathbb{R}^d \to \mathbb{R}$ such that $\tilde{f}(X_i) \approx y_i$

Accuracy

Interpretability

Generalization



⁴

Current Methods of Equation Discovery

Search

 Search space exploration via Evolutionary Search / Genetic Programming . BACON (Lange

1987); PySR (Cranmer et al.,

• Reinforcement Learnir DSR (Peterson et al., 2020), SPL (Su

Learning

Training Encoder-Decoder Transformers

Learning + Search

Search on top of the learned priors

- Search at the decoding space TPSR (Shojaee et al., 2023); uDSR (Landajuela et al., 2022)
- Search at the latent space

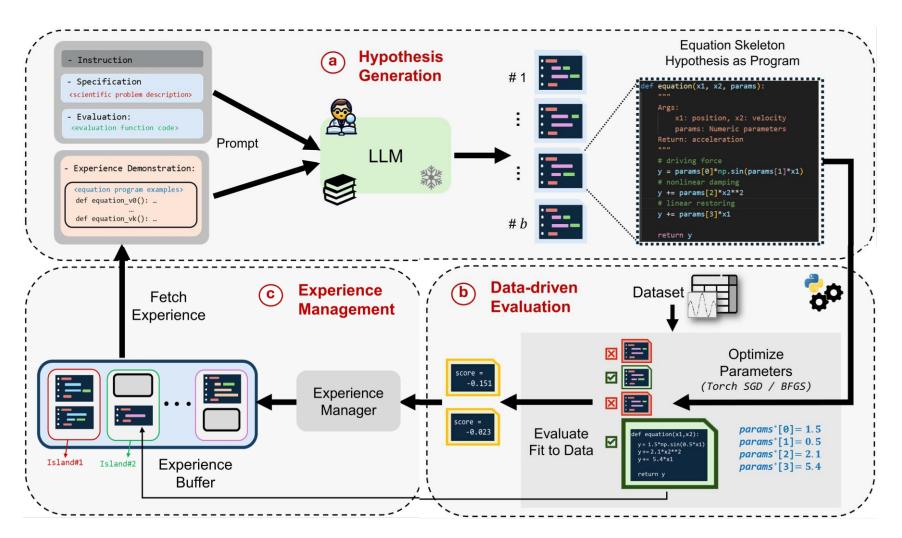
SNIP (Meidani et al., 2024); HVAE (Mežnar et al., 2024)

models: NeSymReS (Biggio nny et al., 2022)

leric data mbolic equations

- However, these techniques do not benefit from the context or domain knowledge for scientific problems.
- Can we incorporate such scientific domain knowledge into the process of equation discovery?

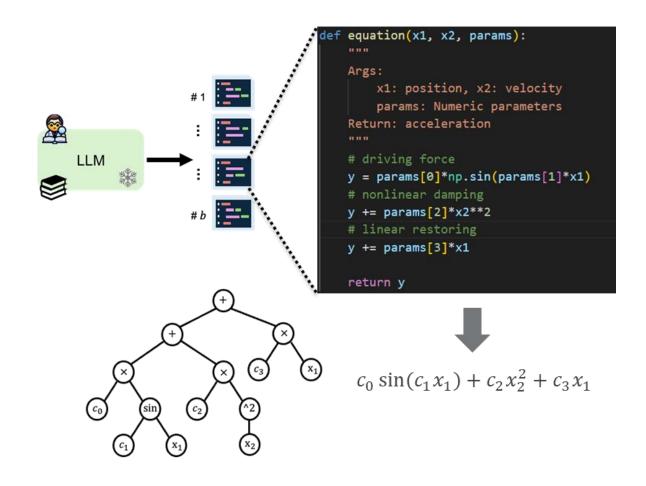
LLM-SR: Scientific Equation Discovery via Programming with LLMs



LLM-SR | Hypothesis Generation

Equation as Program

- Example: A Python function taking in input variables and parameters (equation coefficients) and returning target variable
- More flexible representation:
 - Piece-wise, Conditional (if-else), etc.
 - No need for defining a limited set of operators
- More **interpretable** representation:
 - Separate different components
 - Comments
- Differentiable programming



LLM-SR | Data-Driven Evaluation

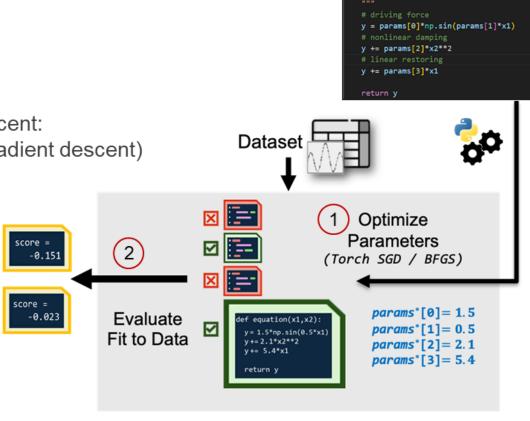
Evaluating the generated hypothesis (Equation Skeleton)

Step 1) Optimizing the parameters

- Nonlinear Optimization:
 - NumPy Operators with SciPy BFGS
- Differentiable programming with gradient descent:
 - PyTorch Operators with SGD/Adam (gradient descent)

Step 2) Evaluation Score

- Discard infeasible equations
- Assign the score based on fitness to data with optimized parameters



equation(x1, x2, params):

x1: position, x2: velocity

params: Numeric parameters

LLM-SR | Experience Management

 To better navigate the landscape of hypotheses and avoid local optima.

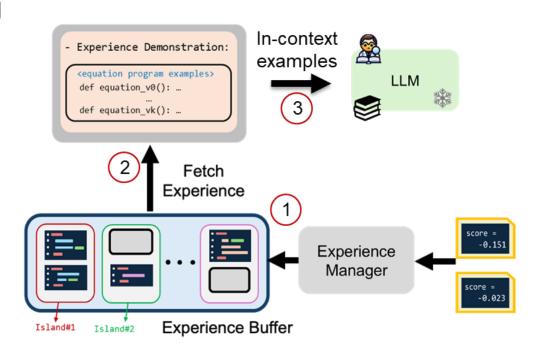
Step 1) Store hypotheses in an experience buffer:

Multi-population (Islands) model to maintain diverse equations

Step 2) Sample multiple examples favoring higher scores and lower complexities from the buffer

Step 3) Provide these hypotheses as **in-context examples** to LLM.

LLM performs as mutation and cross-over operators



Experiments | Datasets

Benchmarks

- LLM-SR rapidly finds well-known equations in benchmarks such as Feynman physics equations, suggesting that LLMs have likely memorized these prevalent equations.
- Therefore, we introduce new benchmark problems across different scientific domains, designed to simulate the conditions for scientific discovery:

1) Nonlinear damped oscillators:

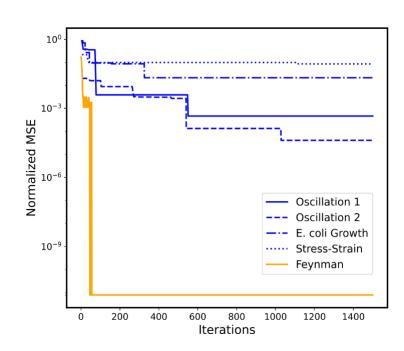
design arbitrary yet feasible nonlinear terms

2) Bacterial (E. coli) growth rate:

custom models for temperature and pH dependency

3) Material stress behavior (Stress-Strain):

 experimental data covering tensile tests on an Aluminum alloy



Findings | Accuracy

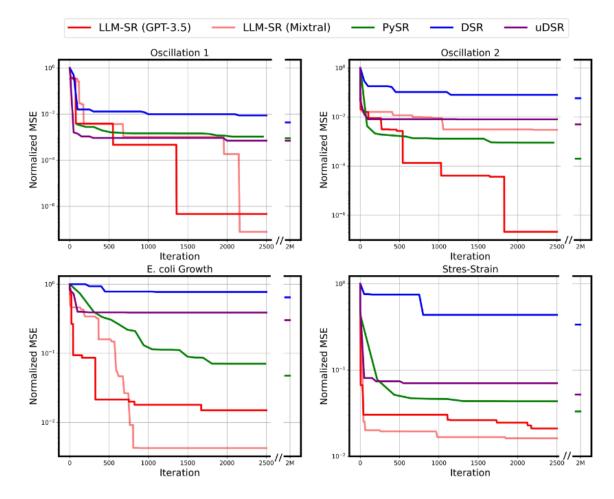
- LLM-SR (with both LLM backbones of 'Mixtral 8x7b-instruct' and 'GPT-3.5-Turbo') **consistently outperforms** state-of-the-art SR baselines without domain-specific knowledge.
- Reporting Normalized Mean Squared Error (NMSE) on:
 - In-domain (ID): test set coming from the same distribution as training data
 - Out-of-domain (OOD): test set coming from domains beyond the training data
- The performance gap between LLM-SR and baselines is more pronounced in OOD test settings compared to ID settings.

Model	Oscillation 1		Oscillation 2		E. coli growth		Stress-Strain	
	ID↓	$OOD\downarrow$	ID↓	OOD↓	ID↓	$OOD\downarrow$	ID↓	OOD↓
GPlearn	0.0155	0.5567	0.7551	3.188	1.081	1.039	0.1063	0.4091
NeSymReS (Biggio et al., 2021)	0.0047	0.5377	0.2488	0.6472	N/A (d > 3	0.7928	0.6377
E2E (Kamienny et al., 2022)	0.0082	0.3722	0.1401	0.1911	0.6321	1.4467	0.2262	0.5867
DSR (Petersen et al., 2021)	0.0087	0.2454	0.0580	0.1945	0.9451	2.4291	0.3326	1.108
uDSR (Landajuela et al., 2022)	0.0003	0.0007	0.0032	0.0015	0.3322	5.4584	0.0502	0.1761
PySR (Cranmer, 2023)	0.0009	0.3106	0.0002	0.0098	<u>0.0376</u>	<u>1.0141</u>	<u>0.0331</u>	<u>0.1304</u>
LLM-SR (Mixtral)	7.89e-8	0.0002	0.0030	0.0291	0.0026	0.0037	0.0162	0.0946
LLM-SR (GPT-3.5)	4.65e-7	0.0005	2.12e-7	3.81e-5	0.0214	0.0264	0.0210	0.0516

Findings | Efficiency

Efficiency

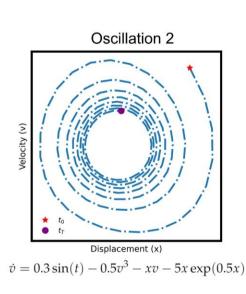
- LLM-SR achieves high fitting equations *faster* due to domain-specific knowledge.
- The improvement gap widens over iterations due to effective LLM modifications (mutation/crossover)



Findings | Interpretability

More interpretable Equations

(Nonlinear oscillation problem)



```
def equation(params, t, x, v):
              driving = params[0]*np.sin(t) # Periodic external force
LLM-SR
              restoring = -params[1]*np.exp(x) # Exponential position-based force
(GPT 3.5)
              interaction = params[3] *x*v # Dependent on position and velocity
              damping = -params[4]*v**3 # Non-linear damping at high velocities
              # Total acceleration
              return driving + restoring + interaction + damping + params[5]
              0.3\sin(t) + \frac{5.0(1-e^x)}{2} - xv - 0.5v^3
         def equation(params, t, x, v):
            restoring = params[0]*x # Proportional to position
            linear_damping = params[1]*v # Proportional to velocity
LLM-SR
            driving = params[2]*np.sin(params[3]*t + params[4]) # Time-dependent
(Mixtral)
            interaction = params[5]*np.abs(x)*v*np.sign(x) # Position-velocity interaction
            nonlinear_damping = params[6]*np.abs(v)**2*np.sign(v) # Cubic velocity damping
             # Total acceleration from sum of forces
            return restoring + linear_damping + driving + interaction + nonlinear_damping
             -5.0x + 0.08v - 0.3\sin(t - 9.1) - 1.27xv + 0.47v|v|
```

NeSymReS $-0.077 \frac{t}{\tan(0.02 t/x)}$

E2E

 $0.008 t + (0.017 - 0.015 t) (-121.6 x - 0.52) + (0.12 \arctan(379.6 x + 3.31)) \cos(5.35 v - 0.036)$

DSF

 $x\left(x + \frac{x(tx^2 - 2x) - 3x}{bx}\right) - 2x$

uDSR

 $0.018tv - 0.028t + 2.37x^3 - 1.6x^2v - 10.5x^2 - 0.93v^2 - 11xv - 19.43x$ $-1.11v^3 - 0.36v + \sin(t) + \frac{0.24}{-v + \exp(v + \cos(v)) + \cos(x^2)}$

PySR

 $0.3\sin(t) - xv - 5x - x(tv^3 + 2.5)\sin(x)$

(a) Ground Truth

(b) LLM-SR Equations

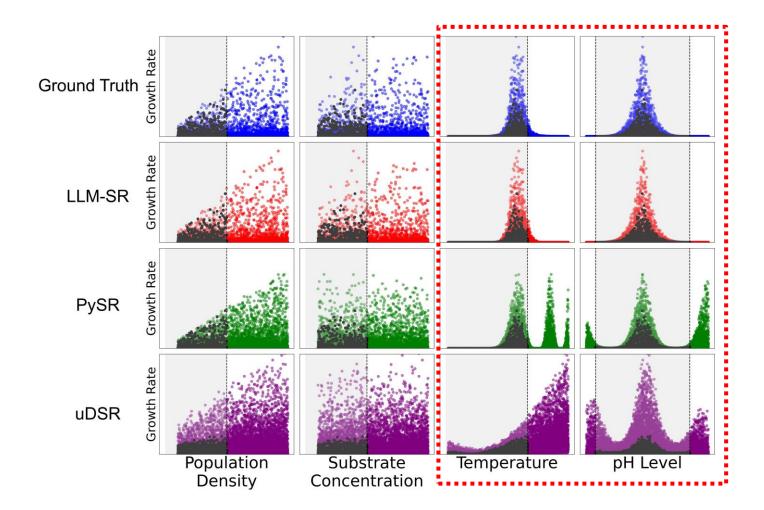
(c) Baseline SR Models

Qualitative Analysis

Better Out-of-domain (OOD) Generalization

(Bacterial growth rate problem)

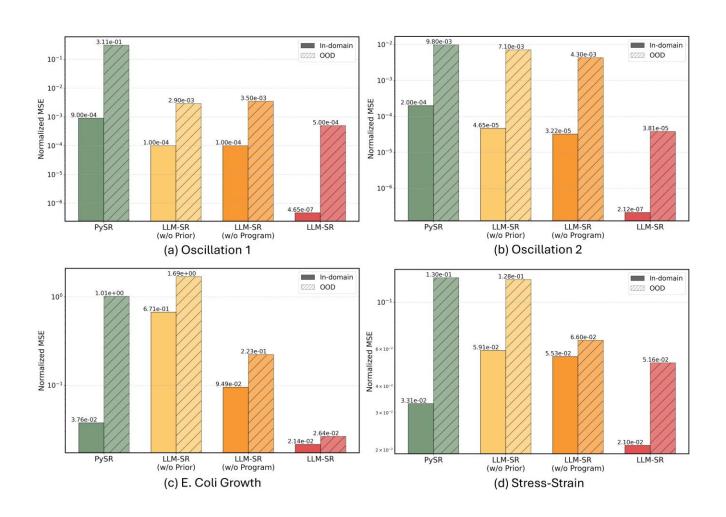
 Shaded regions and black points indicate training data samples



Ablation Study

Ablation Study of Key Components:

What's the impact of LLMs' (1) Scientific Prior Knowledge and (2) Code Generation capabilities in equation discovery?



Thank You! Q&A

VIRGINIA TECH.

Carnegie Mellon
University

A12

Contact: parshinshojaee@vt.edu

