Is uniform expressivity too restrictive? Towards efficient expressivity of GNNs

Sammy Khalife Josué Tonelli-Cueto
Cornell Tech Johns Hopkins University

April 24-28, 2025

GNNs in our work

GNN := SUM-AC GNN

$$\xi^{t+1}(v,G) = \operatorname{comb}_t \left(\xi^t(v,G), \sum_{w \in N_G(v)} \xi^t(w,G) \right)$$

The question we answer

TRAINABILITY

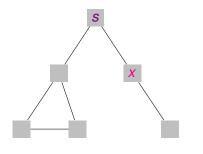
GENERABILITY

Queries

$$Q(\mathbf{v}) = \forall \mathbf{y} \left(E(\mathbf{y}, \mathbf{v}) \to \exists^{\geq 2} \mathbf{z} E(\mathbf{z}, \mathbf{y}) \right)$$

Q(v, G) = 1 expresses the following:

in the graph G, every neighbor of the vertex v has at least two neighbors

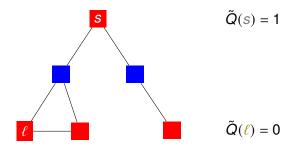

$$\tilde{Q}(v) = \operatorname{Red}(v) \land (\forall y (E(y, v) \to (Blue(y) \land (\forall z (E(z, y) \to Red(z))))))$$

 $\tilde{Q}(v, G) = 1$ expresses the following:

in the graph G, the vertex v is red and all neighbors of v are blue & have only red neighbors

Queries in Practice I

$$Q(\mathbf{v}) = \forall \mathbf{y} \left(E(\mathbf{y}, \mathbf{v}) \to \exists^{\geq 2} \mathbf{z} E(\mathbf{z}, \mathbf{y}) \right)$$



$$Q(s) = 1$$

$$Q(x) = 0$$

Queries in Practice II

$$\tilde{Q}(v) = \operatorname{Red}(v) \wedge (\forall y (E(y, v) \to (\operatorname{Blue}(y) \wedge (\forall z (E(z, y) \to \operatorname{Red}(z))))))$$

GC2 Queries

ATOMIC QUERIES:

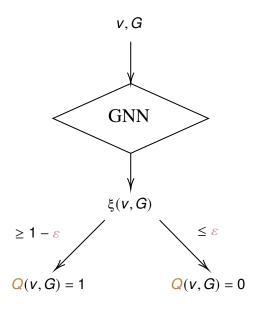
 $Col_i(v) :=$ "vertex v has the ith color"

CONSTRUCTION RULES:

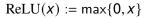
Negation:

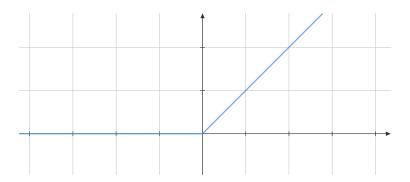
 $\neg \phi(v)$

Conjunction:

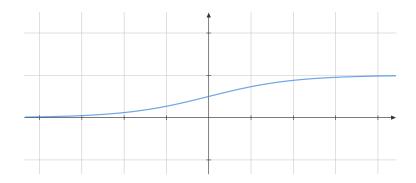

 $\phi(\mathbf{v}) \wedge \psi(\mathbf{v})$

Restricted Quantification over Neighbors:


$$\exists^{\geq N} y (E(y,v) \land \phi(v))$$


$$Q(v) = \forall y \left(E(y, v) \to \exists^{\geq 2} z E(z, y) \right)$$
$$= \neg \left(\exists^{\geq 1} y \left(E(y, v) \land \left(\neg \left(\exists^{\geq 2} v E(v, y) \right) \right) \right) \right)$$

GNN Expression of Queries


Sigmoid vs ReLU

Sigmoid vs ReLU

Sigmoid(
$$x$$
) := $\frac{1}{1 + e^{-x}}$

State of the Art: ReLU GNNs

THEOREM (BARCELO, KOSTYLEV, MONET, PÉREZ, REUTTER & SILVA; 2020) GC2 query Q of size d THEN: there is a ReLU GNN of size 4d expressing Q over all graphs

tldr: GC2 queries are uniformly expressible by ReLU GNNs

A ReLU GNN expressing a first order query expresses a GC2 query

Sigmoid GNNs are less expressive than ReLU GNNs

$$Q(v) = \forall y \left(E(y, v) \rightarrow \exists^{\geq 2} z E(z, y) \right)$$

$$Theorem$$

$$(KH. \& T.-C.; ICLR25)$$

$$Sigmoid GNN with output \xi$$

$$Then:$$

$$for all \varepsilon > 0,$$

$$there are rooted trees T and T'$$

$$with roots s and s'$$

$$such that:$$

$$(a) Q(s, T) = 1 and Q(s', T') = 0$$

tldr: Sigmoid GNNs cannot express uniformly GC2 queries

(b) $|\xi(s,T) - \xi(s',T')| < \varepsilon$

Sigmoid GNNs are almost as expressive as ReLU GNNs

```
THEOREM

(KH. & T.-C.; ICLR25)

GC2 query Q of size d

\Delta > 0

THEN:

there is
a Sigmoid GNN of size O(d \log \log(\Delta))

expressing Q

over all graphs of degree \leq \Delta
```

tldr: Sigmoid GNNs express almost uniformly GC2 queries

Take home message

ReLU GNNs can express a GC2 query for all graphs with size only depending on the query not on the graph

Sigmoid GNNs cannot express a GC2 query for a class of graphs with size only depending on the query...

...but dependence on graph size is so small that does not have practical implications for expressivity

All the details in our paper!

