

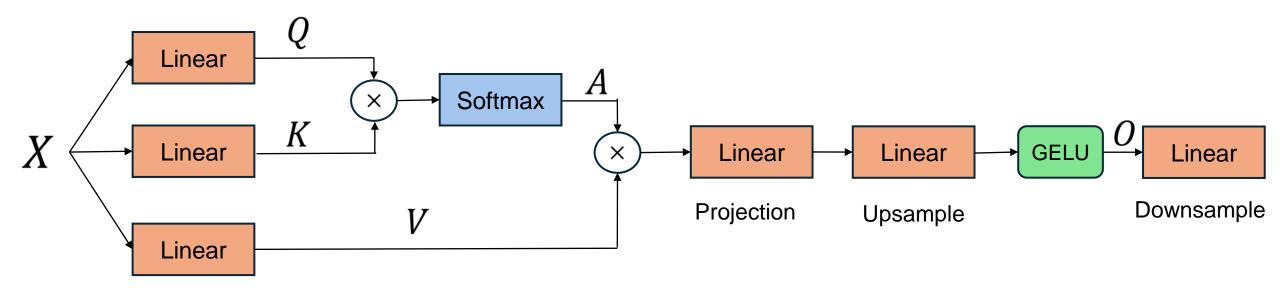
SLoPe:

Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs

Mohammad Mozaffari¹, Amir Yazdanbakhsh², Zhao Zhang³, Maryam Mehri Dehnavi¹

¹ University of Toronto, ² Google DeepMind, ³Rutgers University

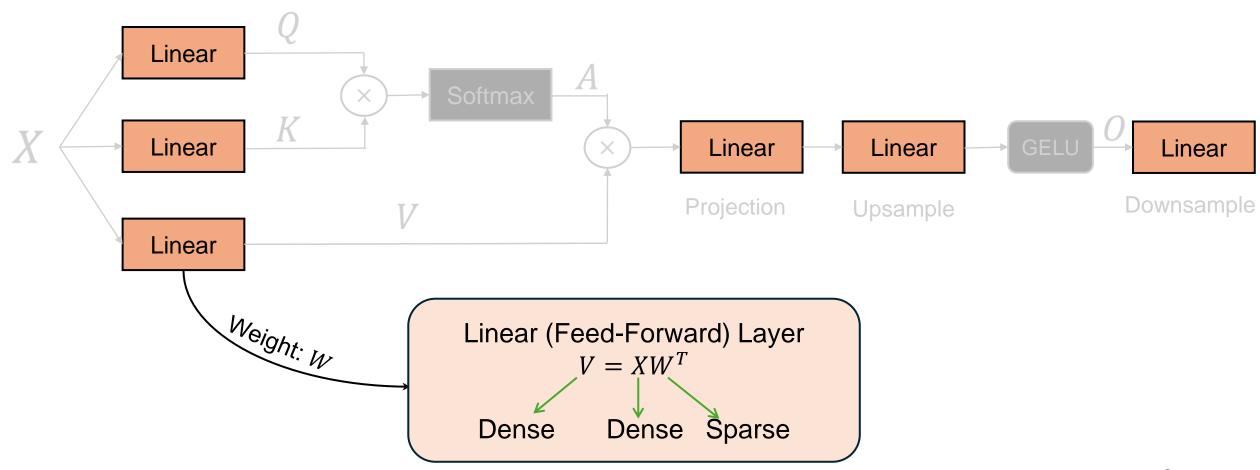
LLM Compute Graph



Residual connections, layer norms, and other details of the compute graph are not illustrated.

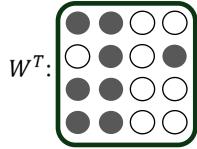
V: Output X: Input W: Weight

LLM Compute Graph | Weight Sparsity



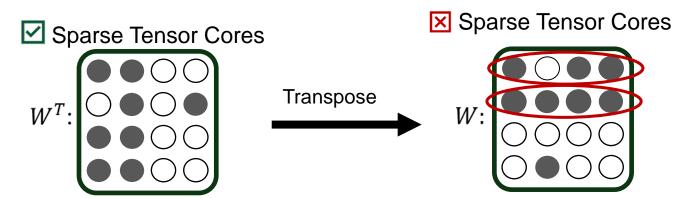
SLoPe | Double-Pruned Backward Pass

☑ Sparse Tensor Cores



Forward Pass: $Y = XW^T$

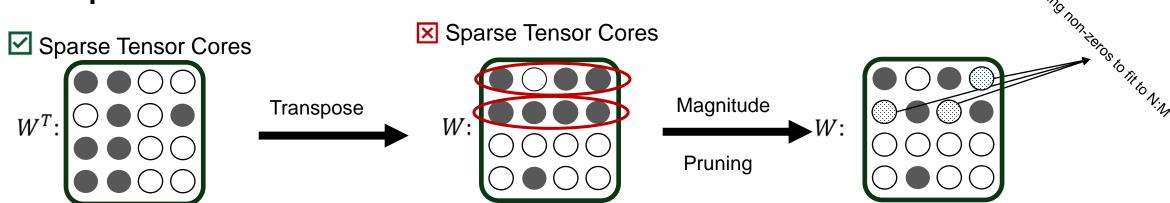
SLoPe | Double-Pruned Backward Pass



Forward Pass: $Y = XW^T$

Backward Pass: $\nabla_X L = \nabla_Y LW$

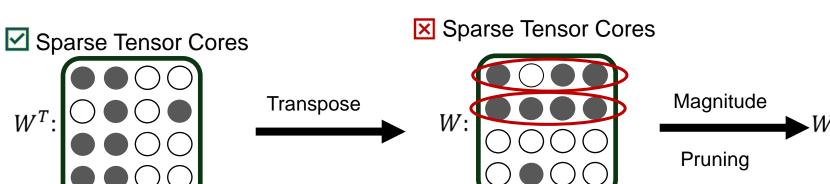
SLoPe | Double-Pruned Backward Pass



Forward Pass: $Y = XW^T$

Backward Pass: $\nabla_X L = \nabla_Y LW$

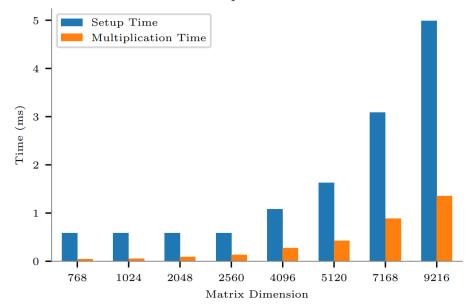
SLoPe | SpMM Setup Overhead



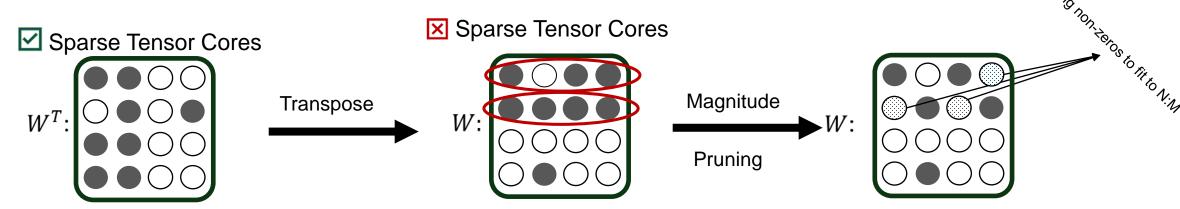
No non teros to fin to N. II.

Forward Pass: $Y = XW^T$

Backward Pass: $\nabla_X L = \nabla_Y L W$



SLoPe | SpMM Setup Overhead

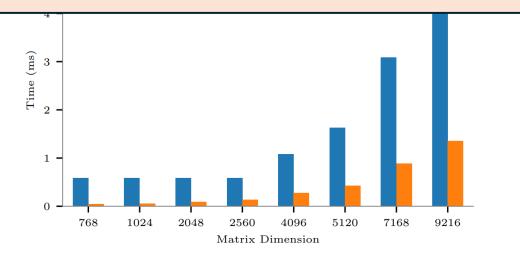


Forward Pass: $Y = XW^T$

Backward Pass: $\nabla_X L = \nabla_Y LW$

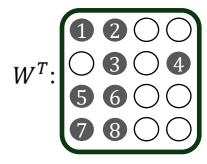
cuSPARSELt SpMM Time Breakdown

SLoPe prunes and sets up the W in the backward pass every 100 iterations!

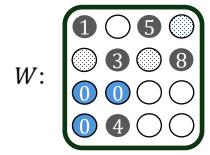


SLoPe | Running Example

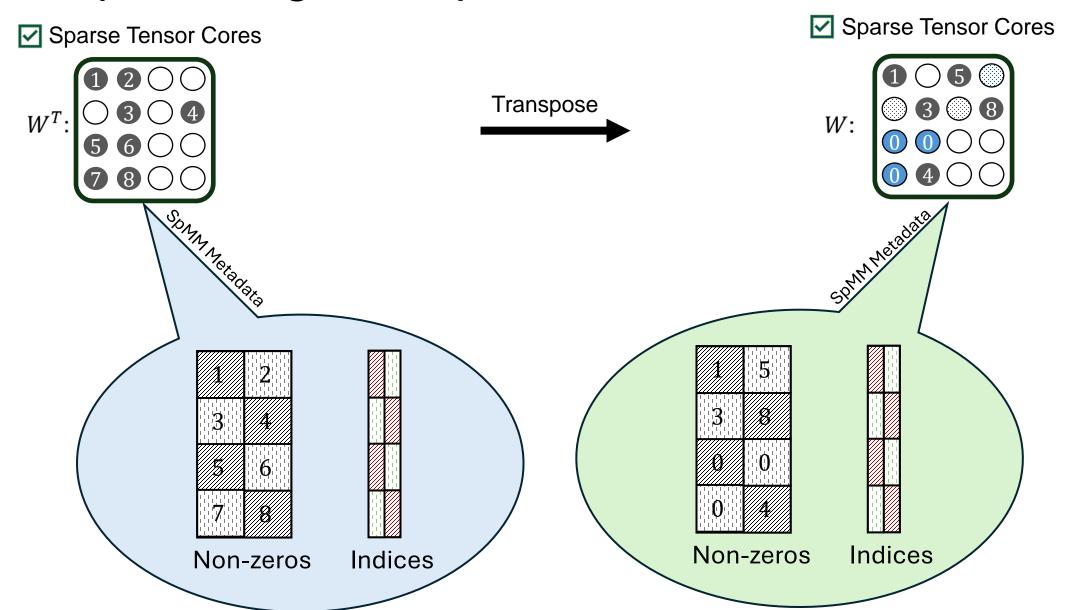
✓ Sparse Tensor Cores



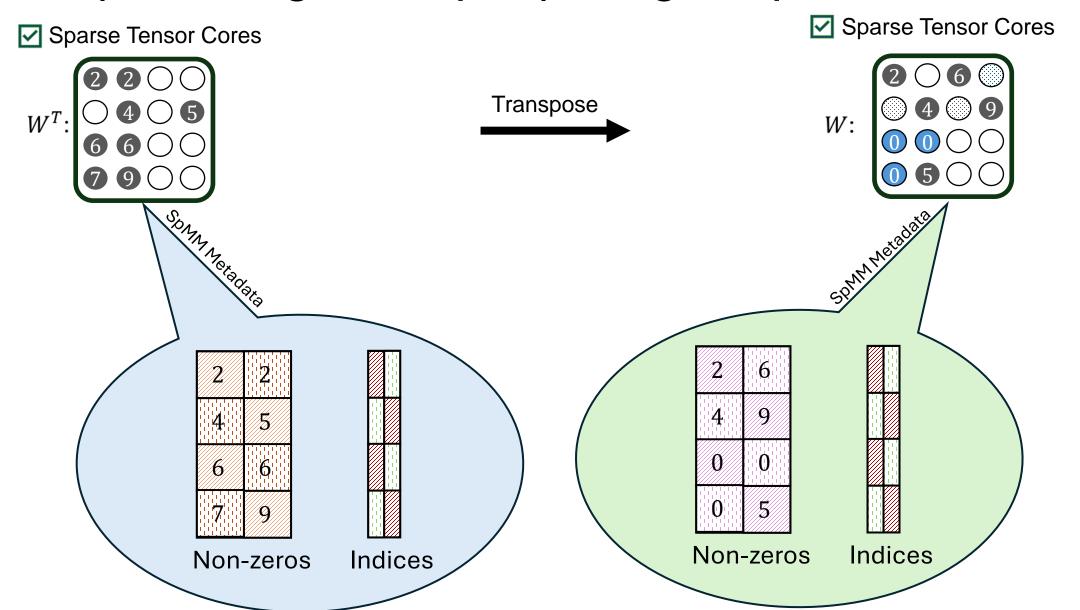
✓ Sparse Tensor Cores



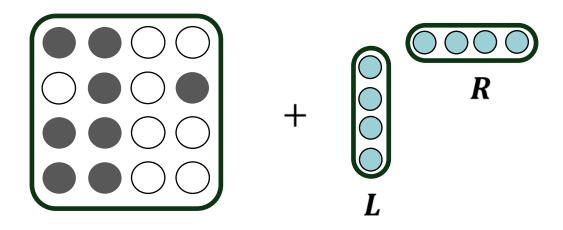
SLoPe | Running Example



SLoPe | Running Example | Weight Update



SLoPe | Lazy Low-rank Adapters



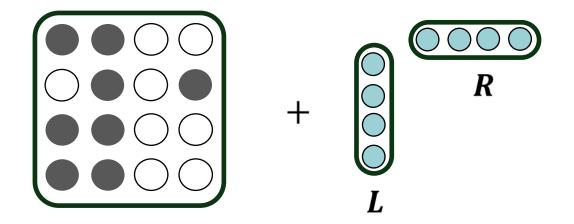
$$W = W_{sparse} + LR$$

d: Hidden Dimension

r: Adapter Rank

b: Batch Size

SLoPe | Lazy Low-rank Adapters



$$W = W_{sparse} + LR$$

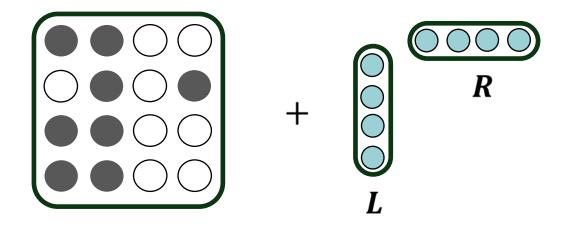
Complexity	Sparse + Low-rank	Dense		
Memory	$\frac{d^2}{2} + 2rd$	d^2		
Compute	$\frac{bd^2}{2} + 2brd$	bd^2		

SLoPe | Lazy Low-rank Adapters

d: Hidden Dimension

r: Adapter Rank

b: Batch Size



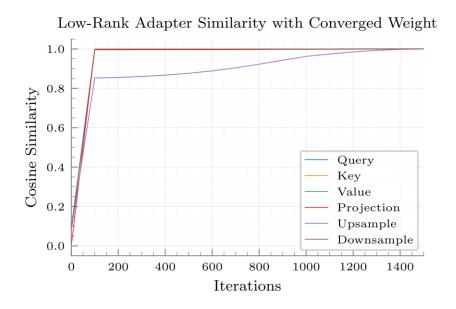
$$W = W_{sparse} + LR$$

Complexity	Sparse + Low-rank	Dense
Memory	$\frac{d^2}{2} + 2rd$	d^2
Compute	$\frac{bd^2}{2} + 2brd$	bd^2

Since $r \ll d$, the memory and compute overhead is negligible.

SLoPe | Lazy Low-rank Adapters | Convergence Rate

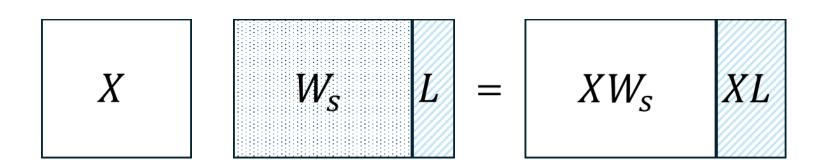
- We test the convergence rate of different layers in BERT-Large-Uncased.
 - Low-rank adapters converge after only 100 iterations.



 Due to their fast convergence rate, SLoPe adds low-rank adapters in the last 1% of training.

SLoPe | Combined SpMM and Low-rank Adapters

- Low arithmetic intensity in low-rank adapters
 - Solution: Combines SpMM and Low-rank adapters



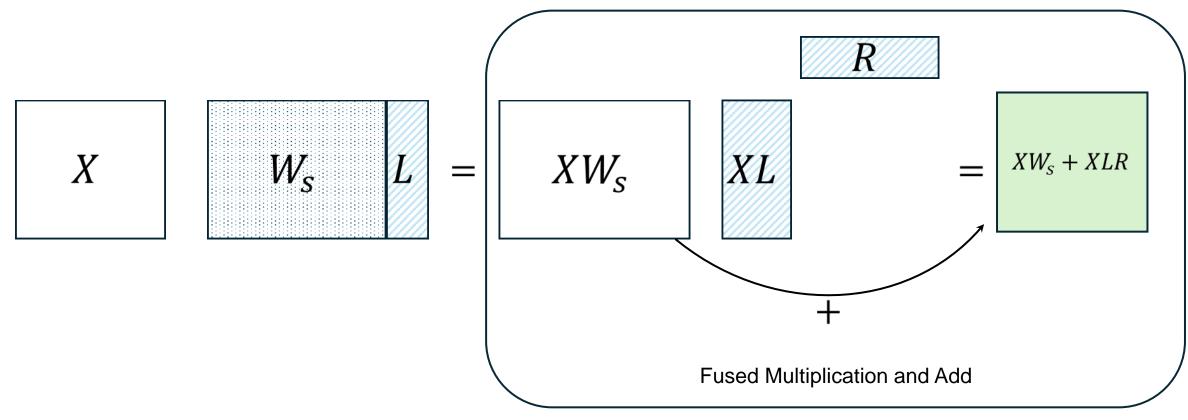
SLoPe | Combined SpMM and Low-rank Adapters

- Low arithmetic intensity in low-rank adapters
 - Solution: Combines SpMM and Low-rank adapters

$$X \qquad V_S \qquad L = XW_S \qquad XL$$

SLoPe | Combined SpMM and Low-rank Adapters

- Low arithmetic intensity in low-rank adapters
 - Solution: Combines SpMM and Low-rank adapters



SLoPe | Results | Speedup and Memory Reduction

Speedup

SLoPe achieves up to

 $1.25 \times \text{speedup in training!}$

 $1.53 \times \text{speedup in inference!}$

Memory Reduction

SLoPe achieves up to

 $0.63 \times \text{memory reduction in training!}$

 $0.51 \times \text{memory reduction in inference!}$

SLoPe | Results | GPT2 Zero-shot Accuracy

Метнор	ADAPTER RANK	MMLU↑	Arc Challenge↑	Open- BookQA↑	Wino- Grande↑	HELLA- SWAG↑	МатнQА↑	PıQA↑	RACE [†]
DENSE	N/A	22.9	20.7	16.2	50.6	28.5	21.8	59.8	28.4
SLoPE	2.1% 0.05% 0	23.0 23.0 23.0	19.3 19.4 19.3	16.4 16.2 16.0	50.8 50.5 50.1	27.5 27.4 27.5	20.8 20.8 20.8	57.6 57.5 57.4	27.2 27.1 27.1
EXTENDED SR-STE	2.1% 0.05% 0	24.2 24.1 24.1	18.3 18.4 18.3	14.2 14.2 12.6	47.5 47.5 47.5	26.9 26.8 26.9	21.4 21.2 21.2	55.2 54.5 54.8	24.2 24.2 24.0

SLoPe outperforms state-of-the-art in 6 out of 8 tasks!

SLoPe | Results | BERT-Large-Uncased Accuracy

BERT-Large-Uncased

DATASET	DENSE	r = 0	r = 0.39%	r = 1.56%	r = 6.25%
SQUAD	90.4	89.1	89.1	89.2	89.5
GLUE	80.2	77.4	77.7	77.8	78.2

SLoPe achieves 0.9% and 2% accuracy gap on SQuAD v1.1 and GLUE dataset on BERT-Large-Uncased