

TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval

Leqi Shen 1,2,3* **Tianxiang Hao** 1,2* **Tao He** 5,6 **Sicheng Zhao** 2†

Yifeng Zhang 4 Pengzhang Liu 4 Yongjun Bao 4 Guiguang Ding 1,2†

¹ School of Software, Tsinghua University ² BNRist, Tsinghua University

³ Hangzhou Zhuoxi Institute of Brain and Intelligence

⁴ JD.com ⁵ GRG Banking Equipment Co., Ltd. ⁶ South China University of Technology

Background

Text-Video Retrieval.

- Matching videos that correspond to specific query texts or vice versa.
- Recent studies focus on full fine-tuning of CLIP for TVR.

Limitations.

- Introducing cumbersome modules to extract video features.
- Slow inference speed severely limits their real-world applications.
- The training process of CLIP4Clip with CLIP-ViT-B/16 requires 70.1GB GPU memory usage and takes 6.5 hours.

In this work, we focus on efficient fine-tuning TVR.

Background

Challenges in efficient adaptation for TVR.

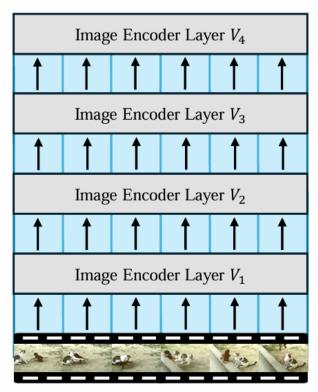
- The inherent differences between image and video modalities.
- Handling multiple sampled frames dramatically raises the number of patch tokens.

Challenges in trainable parameters.

 Current parameter-efficient fine-tuning methods incur high inference costs.

Challenges in model complexity.

 Current token compression methods overlook temporal redundancy in consecutive frames of a video.

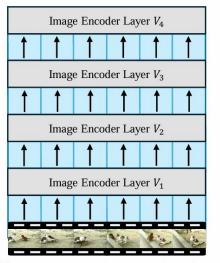


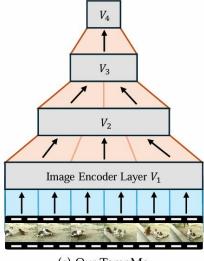
(b) Existing text-video retrieval methods.

Background

We propose Temporal Token Merging (**TempMe**).

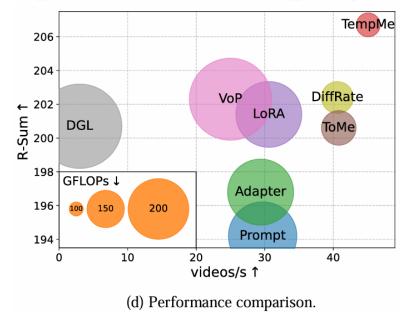
- A parameter-efficient and training-inference efficient
 TVR architecture that minimizes trainable parameters and model complexity.
- By gradually combining neighboring clips, we reduce spatio-temporal redundancy and enhance temporal modeling across different frames.
- Leading to improved efficiency and performance.





(b) Existing text-video retrieval methods.

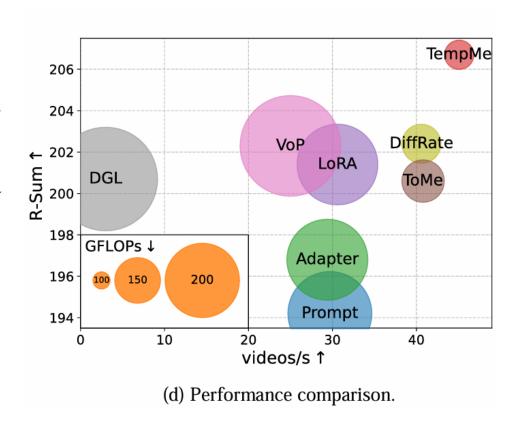
(c) Our TempMe.

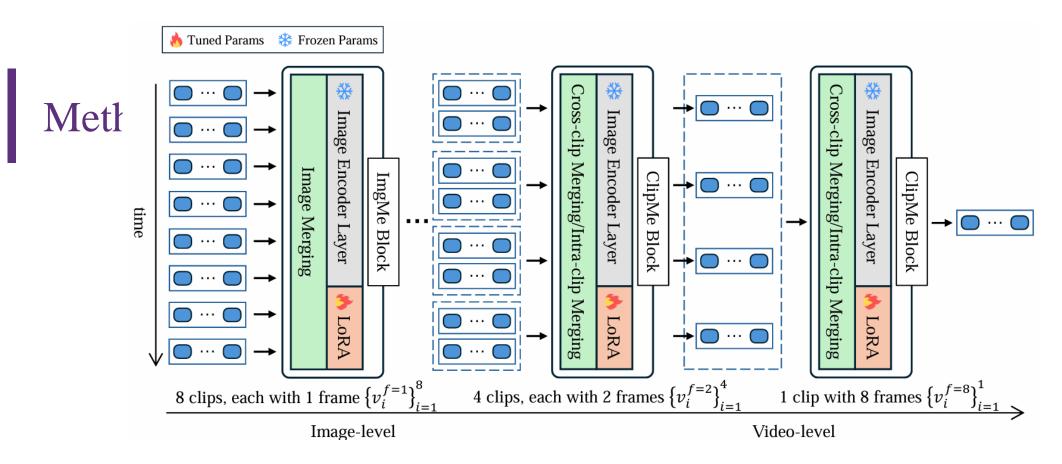


Related Work

Compared with token compression methods.

- In CLIP-based text-video retrieval, each sampled frame is processed as an independent token set.
- Existing methods are limited to pruning tokens within a single token set for an image or video, without addressing token compression across multiple sets or incorporating temporal fine-tuning.
- Our TempMe fruitfully integrates parameter-efficient fine-tuning and token compression techniques, which minimizes spatio-temporal redundancy and enhance temporal modeling across frames.

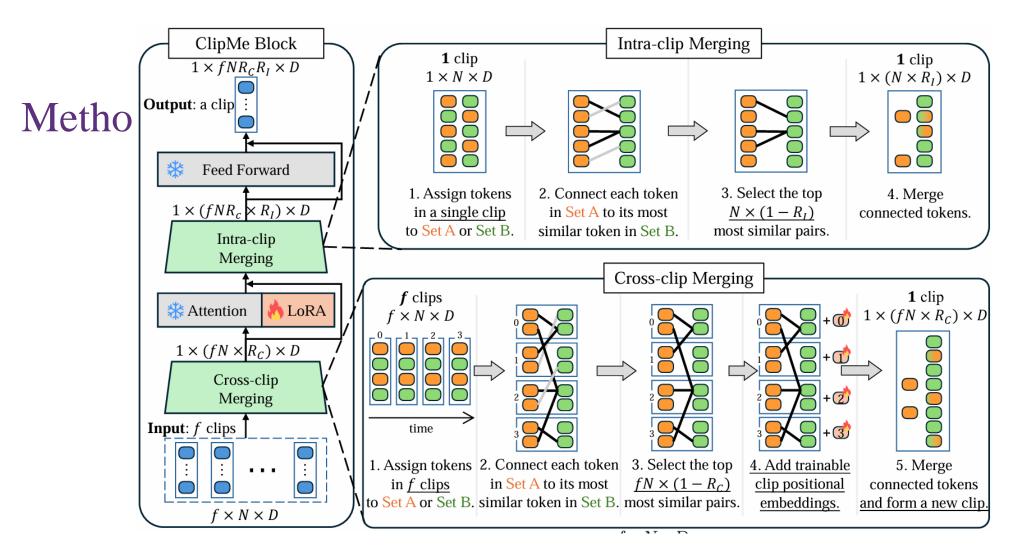




We freeze the pre-trained CLIP and merely train LoRA in both the image and text encoders.

We propose the Progressive Multi-Granularity framework.

- ImgMe Block independently encodes each single frame.
- ClipMe Block aggregates short-frame clips into extended-frame clips

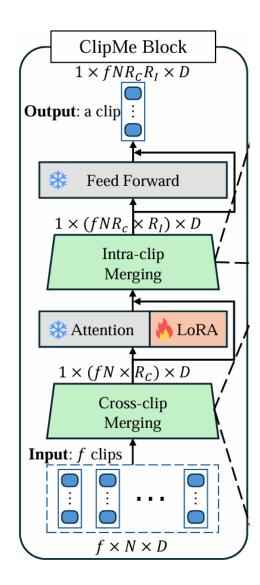


Instead of ImgMe Block which merges tokens in each single frame, we propose ClipMe Block to process multi-frame clips.

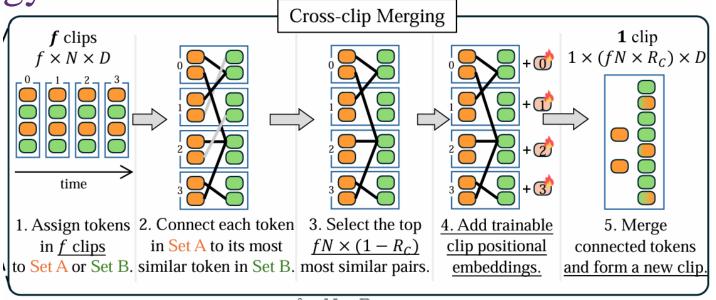
Methodology

ClipMe Block

- Cross-clip Merging:
 Adjacent clips are aggregated, which significantly reduces the number of temporal tokens and generates a new clip.
- Intra-clip Merging:
 The tokens within the newly formed clip are further compressed.



Methodology



Cross-clip Merging

- Considering the high temporal redundancy observed in videos, we select a large subset, $fN \times (1 R_c)$, of the most similar token pairs for merging.
- Before merging,
 the trainable clip positional embeddings are added to facilitate temporal understanding.

Experiments

Complexity comparisons.

4									
Backbone			CLIP-V	ViT-B/32		1	1	CLIP-ViT-B/16	
# Frames		12		1	64		1	12	
Method	GFLOPs	# Tokens	R@1/R-Sum	GFLOPs	# Tokens	R@1/R-Sum	GFLOPs	# Tokens	R@1/R-Sum
LoRA DiffRate ToMe TempMe	53.0 (100%) 36.8 (69%) 40.2 (76%) 34.8 (65%)	$12 \times 50 (100\%)$ $12 \times 20 (40\%)$ $12 \times 26 (52\%)$ $1 \times 97 (16\%)$	43.7/193.0 41.5/189.9 42.9/191.4 46.1/198.6	276.7 (100%) 190.1 (69%) 208.5 (75%) 180.3 (65 %)	$64 \times 50 (100\%)$ $64 \times 20 (40\%)$ $64 \times 26 (52\%)$ $1 \times 500 (16\%)$	38.7/191.5 38.0/188.7 38.6/189.6 44.9/205.6	211.3 (100%) 138.5 (66%) 144.4 (68%) 121.4 (57 %)	$12 \times 197 (100\%)$ $12 \times 49 (25\%)$ $12 \times 77 (39\%)$ $1 \times 127 (5\%)$	47.3/201.4 47.3/202.4 46.2/200.6 49.0/206.7

Compared to ToMe,

our TempMe reduces tokens by more than **30**% for both CLIP-ViT-B/32 and CLIP-ViT-B/16, effectively decreasing model complexity while significantly surpassing accuracy.

With a 12-frame length and CLIP-ViT-B/16 backbone on MSRVTT,

TempMe outputs only 5% of the input tokens, reaches 57% GFL OPs, and achieves a 5

TempMe outputs only 5% of the input tokens, reaches 57% GFLOPs, and achieves a 5.3% R-Sum gain.

Experiments

Comparisons in the text-to-video task on MSRVTT.

Methods	# Params (M)	GFLOPs	R@1↑	R@5↑	R@10↑	R-sum↑	MnR↓	
CLIP-ViT-B/32								
Full Fine-tuning	CLIP4Clip	123.54	53.0	43.1	70.4	80.8	194.3	16.2
	Prompt	0.08	58.2	40.4	66.3	77.3	184.0	16.7
	Adapter	0.26	53.1	41.9	69.9	78.7	190.2	14.9
Parameter-Efficient	LoRA	0.49	53.0	43.7	68.9	80.4	193.0	16.0
Parameter-Emclent	PLEVU	6.35	-	36.7	64.6	76.8	178.1	-
	VoP^{F+C}	14.10	58.0	44.6	69.9	80.3	194.8	16.3
	DGL^L	0.83	67.4	44.7	70.5	79.2	194.4	16.2
	DGL^T	9.57	>67.4	45.8	69.3	79.4	194.5	16.3
	EVIT	0.49	37.2	41.4	69.0	78.1	188.5	16.8
Demonstra ECC disease	DiffRate	0.49	36.8	41.5	68.6	79.8	189.9	16.3
Parameter-Efficient	STA	0.49	35.7	42.6	69.5	78.8	190.9	17.0
& Lafanana Eff ai ant	ToMe	0.49	40.2	42.9	68.3	80.2	191.4	16.2
Inference-Efficient	TESTA	0.59	40.6	43.7	69.0	79.4	192.1	16.8
	TempMe	0.50	34.8	46.1	71.8	80.7	198.6	14.8
CLIP-ViT-B/16								
	MV-Adapter	3.6	>210	46.0	72.0	82.1	200.1	_
Parameter-Efficient	RAP	1.06	>210	46.5	73.9	82.0	202.4	12.1
rarameter-emclent	VoP	14.10	246.2	47.7	72.4	82.2	202.3	12.0
	DGL^L	0.83	251.2	48.3	71.8	80.6	200.7	13.4
Param&Infer-Efficient TempMe		0.50	121.4	49.0	74.4	83.3	206.7	11.9

Our TempMe achieves significant improvements over previous methods,

with a **3.8**% R-Sum increase using ViT-B/32 and

a **4.3**% R-Sum increase using ViT-B/16,

while maintaining minimal GFLOPs.

Experiments

Previous parameter-efficient TVR, VoP and DGL, compromise efficiency for performance.

Unlike VoP and DGL, our TempMe achieves a **1.8**× speedup over VoP and a **13.7**× speedup over DGL, while reducing GFLOPs by **51**% and improving R-Sum by **4.4**%. Computational overhead comparisons of the CLIP-ViT-B/16 backbone.

Methods	videos/s	GFLOPs	# Tokens	R@1/R-Sum↑
Prompt	29.7	216.8	2369	44.3/194.2
Adapter	29.4	211.7	2364	44.9/196.8
LoRA	30.6	211.3	2364	47.3/201.4
VoP^{F+C}	25.0	246.2	2368	47.7/202.3
DGL^L	3.3	251.2	2416	48.3/200.7
DiffRate	40.6	138.5	588	47.3/202.4
ToMe	40.8	144.4	924	46.2/200.6
TempMe	45.1	121.4	127	49.0/206.7

THANKS!

