

MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion

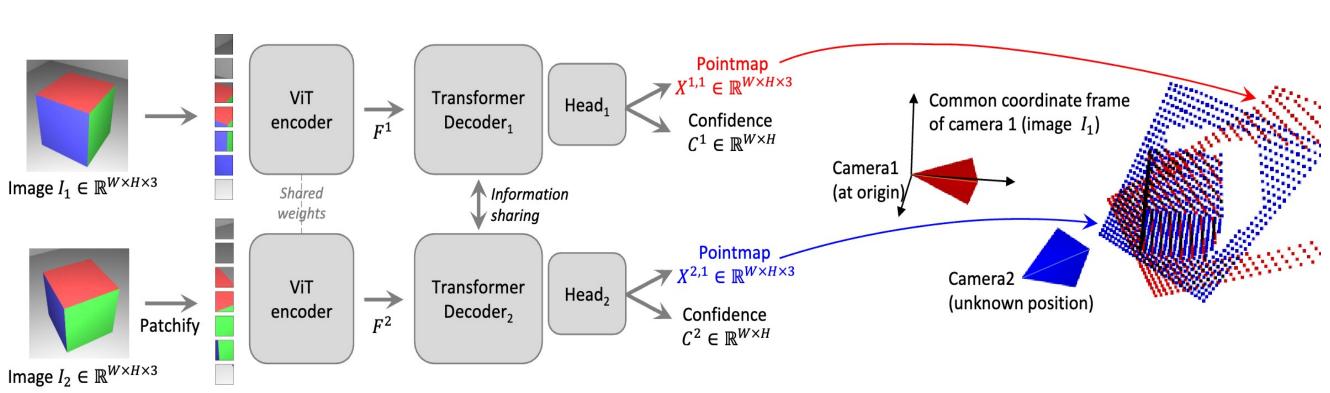
Junyi Zhang¹, Charles Herrmann^{2,+}, Junhwa Hur², Varun Jampani³, Trevor Darrell¹, Forrester Cole², Deqing Sun^{2,*}, Ming-Hsuan Yang^{2,4,*} ¹UC Berkeley, ²Google DeepMind, ³Stability AI, ⁴UC Merced

Introduction

- Task: estimating global geometry given a casuallycaptured monocular video of dynamic scenes, in a primarily **feed-forward** manner
- Existing methods rely on multi-stage pipelines or global optimizations that decompose the problem into subtasks, complex and prone to errors
- How: we take a geometry-first approach that directly estimates per-timestep geometry of dynamic scenes
- Key insight: by simply estimating a pointmap for each timestep, we adapt DUSt3R's representation, previously used for static scenes, to dynamic scenes.
- Challenge: despite the scarcity of training data, we show that by posing the problem as a fine-tuning task, strategically training the model on limited data can surprisingly enable it to handle dynamics

Overview

Video Input



Video Depth

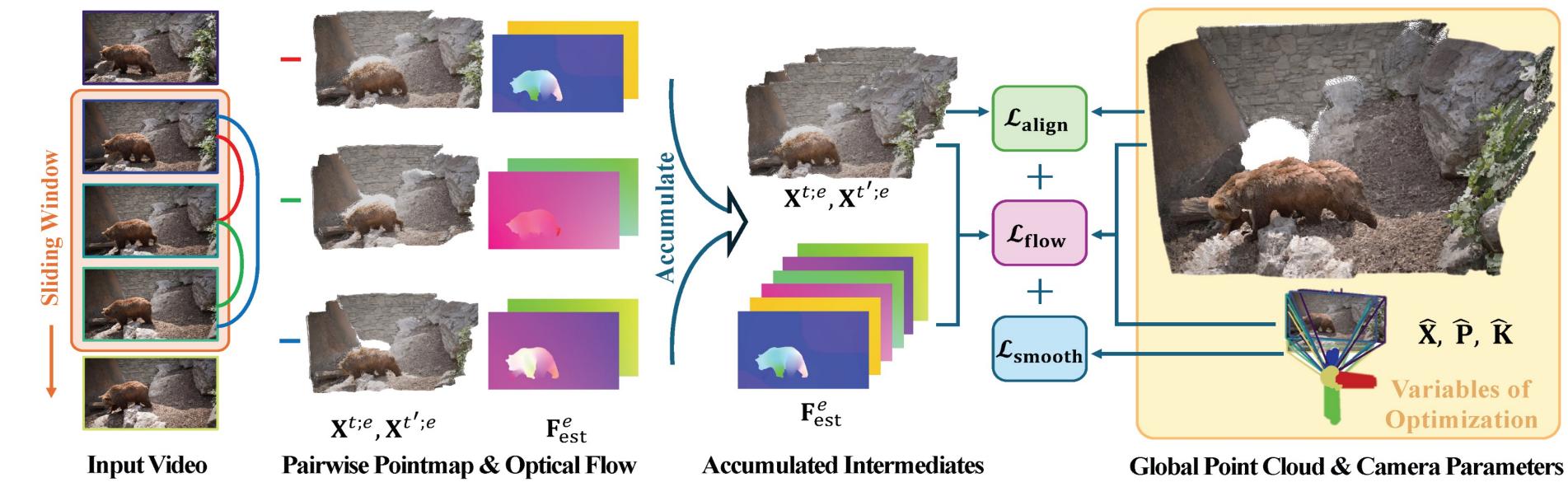
Given a video of dynamic scene, MonST3R processes it to produce a time-varying dynamic point cloud, along with per-frame camera poses and intrinsics, in a predominantly feed-forward manner

Dynamic Point Cloud & Camera Pose

Pointmap Representation of DUSt3R

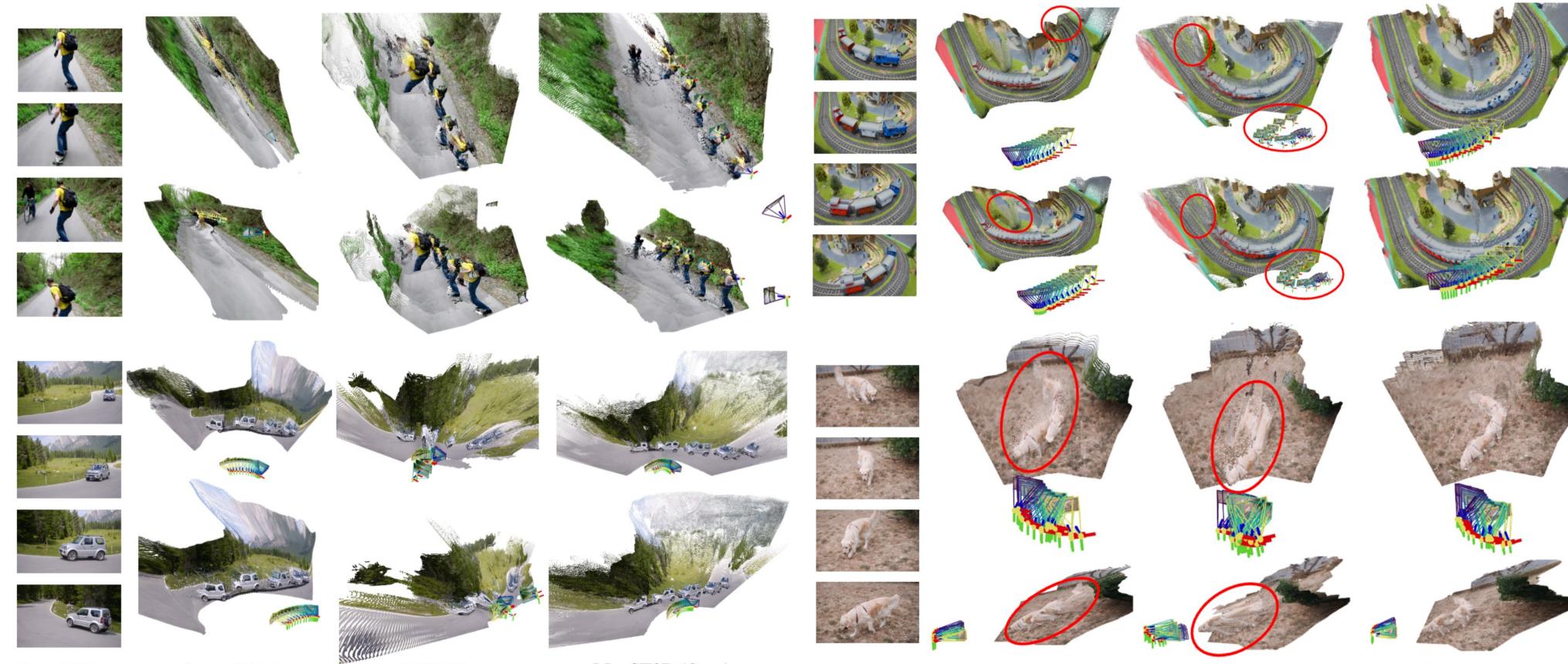
Given two frames, DUSt3R estimates two corresponding pointmaps (xyz coordinates for each pixel), aligned in the camera coordinate system of the first frame; from which, camera intrinsics, pose, and depth can be derived

No constraint on dynamic/static scenes in the representation! But how does the model actually work for dynamic scenes? ->


Limitation of DUSt3R on Dynamic Scenes

As this is mainly a data issue, we propose a simple approach to adapt DUSt3R to dynamic scenes, by fine-tuning on a small set of dynamic videos, which surprisingly works well

Dynamic Global Point Cloud


for video input, aggregate pairwise results to build global point cloud with global alignment

Quantitative & Qualitative results

Table 1. Video denth evaluation

Table 1: Video depth evaluation									Table 2: Camera pose estimation										
			Sintel		Bonn		KITTI					Sintel		TUM-dynamics			ScanNet (static)		
lignment	Category	Method	Abs Rel↓	δ<1.25 ↑	Abs Rel↓	$\delta < 1.25 \uparrow$	Abs Rel↓ &	$\delta < 1.25 \uparrow$	Category	Method	ATE↓ l	RPE trans ↓	RPE rot ↓	ATE↓	RPE trans ↓	RPE rot ↓	ATE ↓	RPE trans ↓	RPE
r-sequence ale & shift	Single-frame depth	Marigold Depth-Anything-V2	0.532 0.367	51.5 55.4	0.091 0.106	93.1 92.1	0.149 0.140	79.6 80.4		DROID-SLAM* DPVO*	0.175 0.115	0.084 0.072	1.912 1.975	-	-	-	-	r <u>-</u>	-
	Video depth	NVDS ChronoDepth DepthCrafter (Sep. 2024)	0.408 0.687 0.292	48.3 48.6 69.7	0.167 0.100 0.075	76.6 91.1 97.1	0.253 0.167 0.110	58.8 75.9 88.1	Pose only	ParticleSfM LEAP-VO*	0.113 0.129 0.089	0.072 0.031 0.066	0.535 1.250	- 0.068	0.008	<u>-</u> 1.686	0.136 0.070	0.023 0.018	0.8 0.5
	Joint video depth & pose	Robust-CVD CasualSAM MonST3R	0.703 0.387 <u>0.335</u>	47.8 54.7 <u>58.5</u>	0.169 0.063	- 73.7 <u>96.4</u>	0.246 0.104	62.2 89.5	•	Robust-CVD CasualSAM DUSt3R w/ mask [†]	0.360 0.141 0.417	0.154 <u>0.035</u> 0.250	3.443 <u>0.615</u> 5.796	0.153 0.071 0.083	0.026 0.010 0.017	3.528 1.712 3.567	0.227 0.158 0.081	0.064 0.034 0.028	7.3 1.6 0.7
r-sequence scale	Video depth Joint depth & pose	DepthCrafter (Sep. 2024) MonST3R	0.692 0.345	53.5 56.2	0.217 0.065	57.6 96.3	0.141 0.106	81.8 89.3	* .	MonST3R	0.108	0.042	0.732	0.063	0.009	1.217	0.068	0.017	0.5

