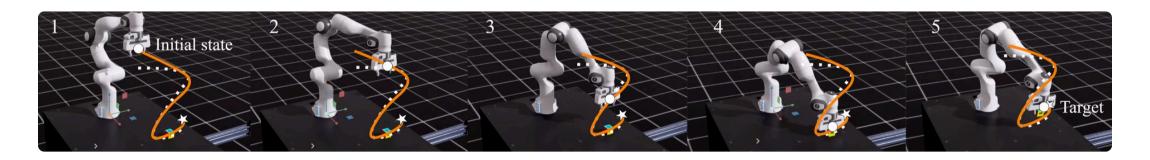
Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery

Paper presentation ICLR 2025, Singapore

Amin Abyaneh, Mahrokh G. Boroujeni, Hsiu-Chin Lin, and Giancarlo Ferrari-Trecate



Imitation Learning

Problem Setup

Expert data

Collection of optimal expert trajectories

Supervised learning

Planning policy

Policy to plan the next state, or current action

Objective

Learn policies to mimic the expert behavior

Recovery from unseen states

Formal guarantees for recovery

Imitation via Dynamical System

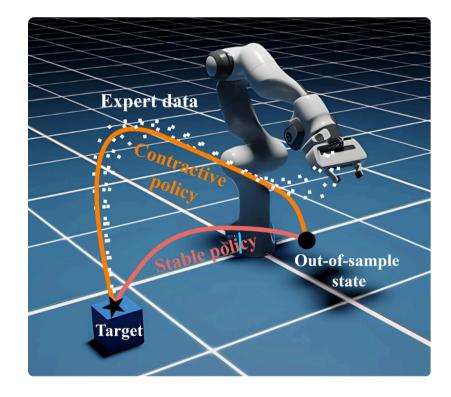
Expert trajectories as solutions to an

ordinary differential equation (ODE)

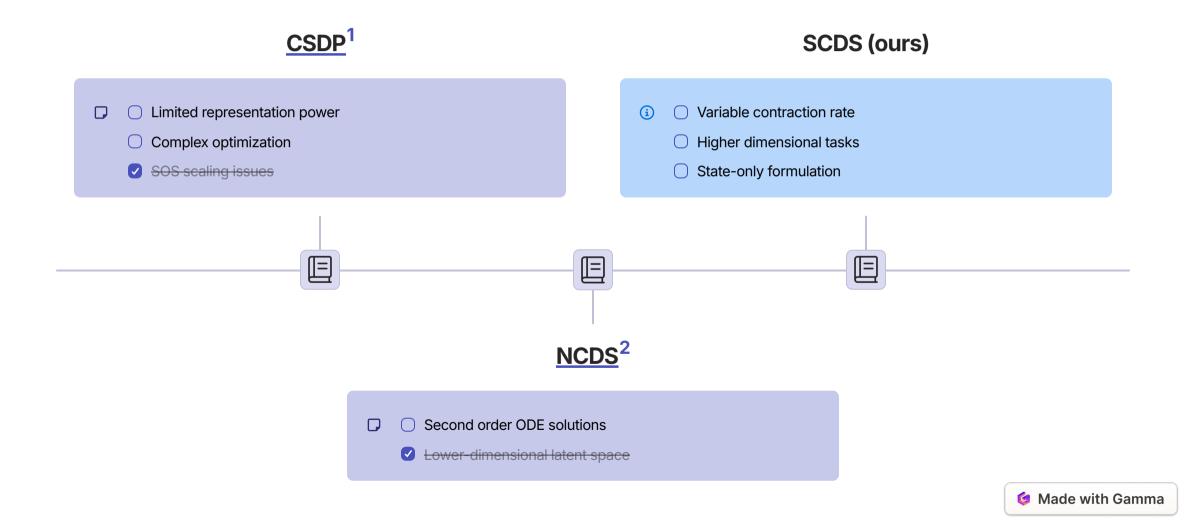
Stability → solutions converge to an equilibrium

Contractivity → all solutions contract

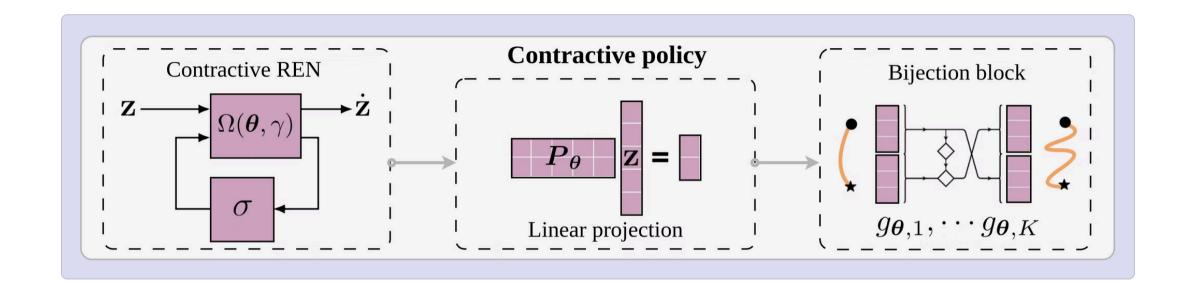
- Stability is a by-product
- Contraction improves the <u>transient behavior</u>



Stories from the Literature



Expressive Contractive Policies



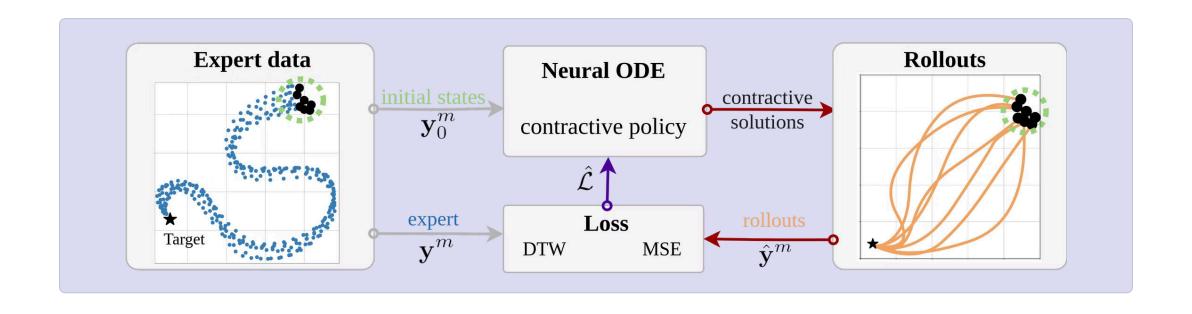
REN (latent) dynamics

- Contractive for any choice of parameters
- Learnable (and adjustable) contraction rate

Output transformation

- Trainable linear projection
- Invertible contraction-preserving coupling layers

Training with Neural ODEs



Differentiable ODE Solutions

Initial value problem to generate differentiable trajectories.

Trajectory Space Loss

Policy rollouts are compared with expert data using dynamic time warping or MSE.

Optimization Problem

Optimal parameters are learned by minimizing the empirical loss.

Out-of-Sample Error Guarantees

1

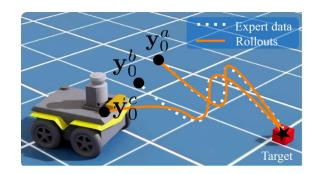
2

Bounded initial states

- Initial state lies within a multi-focal ellipse region
- Focal points at the initial conditions in the dataset

Upper-bounding the loss

- Weighted sum of MSE and
- Uncertainty in the initial state

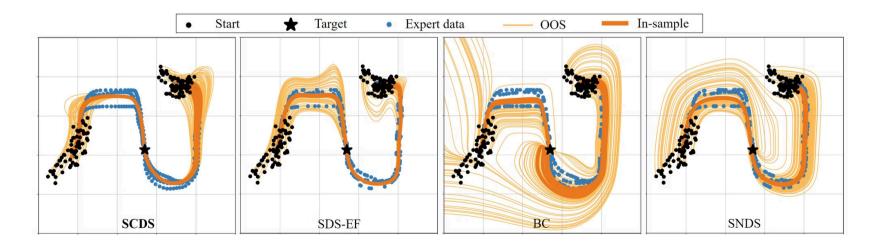


⊘ Theorem.

Loss for a new trajectory ≤ Loss of training trajectories (weighted average) + Uncertainty factor

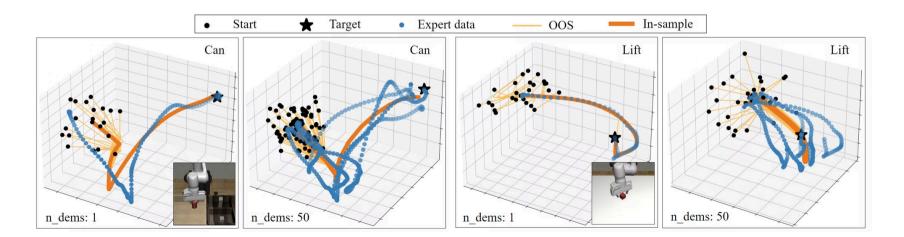
LASA dataset

OOS rollouts reliably contract towards expert demonstrations with high precision.



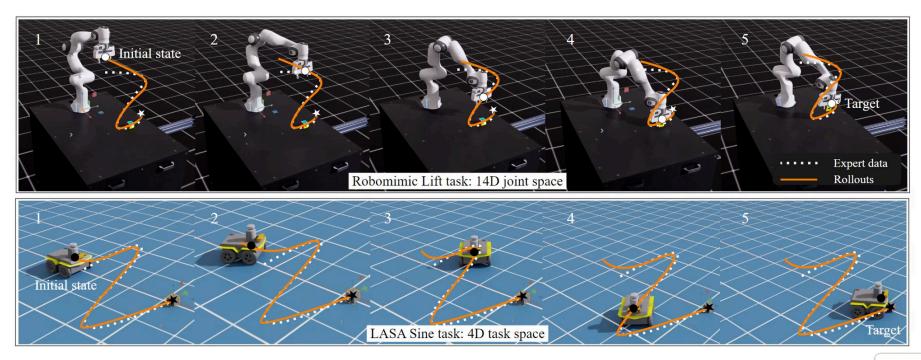
Robomimic dataset

Learning in higher dimensional state spaces can be achieved efficiently.



Simulation deployment

Planning for manipulator and wheeled robots in simulation.



Simulation results

- Substantial improvement in out-of-sample initial states compared to baselines.
- Out-of-sample recovery error remains within the calculated bounds!

Expert	LASA-2D		LASA-4D		Robomimic-6D		Robomimic-14D	
Metric	MSE	soft-DTW	MSE	soft-DTW	MSE	soft-DTW	MSE	soft-DTW
SNDS	0.02 ± 0.01	0.72 ± 0.14	0.03 ± 0.01	1.04 ± 0.19	0.65 ± 0.55	1.26 ± 0.70	2.42 ± 1.37	4.15 ± 0.92
BC	0.04 ± 0.02	0.98 ± 0.12	0.05 ± 0.03	1.48 ± 0.16	0.56 ± 0.32	1.88 ± 0.20	1.75 ± 0.22	4.86 ± 0.58
SDS-EF	0.03 ± 0.01	0.85 ± 0.13	0.05 ± 0.02	1.10 ± 0.15	0.50 ± 0.28	1.01 ± 0.66	3.30 ± 0.75	5.65 ± 0.58
SCDS	0.02 ± 0.01	0.65 ± 0.05	0.03 ± 0.01	0.72 ± 0.12	0.56 ± 0.22	1.05 ± 0.37	1.68 ± 0.45	4.10 ± 0.40
SNDS	2.73 ± 1.67	6.91 ± 1.46	3.65 ± 2.12	9.85 ± 0.63	1.58 ± 0.93	3.27 ± 1.88	6.88 ± 2.16	12.17 ± 2.70
BC	8.63 ± 4.05	16.25 ± 5.27	19.25 ± 7.34	27.48 ± 6.83	11.05 ± 7.41	19.94 ± 9.57	44.98 ± 15.11	37.82 ± 14.13
SDS-EF	1.78 ± 0.34	7.13 ± 1.51	2.33 ± 0.47	10.21 ± 1.98	1.15 ± 0.81	2.67 ± 1.40	11.10 ± 2.10	10.44 ± 1.66
SCDS	0.32 ± 0.15	1.72 ± 0.54	1.09 ± 0.21	2.58 ± 0.30	0.89 ± 0.26	1.71 ± 0.53	2.68 ± 0.65	6.27 ± 0.48
\mathcal{L}_{ub}^{MSE}	0.49 ± 0.07		1.33 ± 0.14		1.43 ± 0.22		2.91 ± 0.45	

Conclusion

Summary

- ✓ Efficient OOS recovery
- ✓ Variable contraction rate
- ✓ Contractive-by-design

Future Work

- ✓ Long-horizon contractive planning
- **⊘** Stochastic contractive policies

Thank you!

Find us at the poster session to talk in person olimits

