

Addressing Label Shift in Distributed Learning via Entropy Regularization

Zhiyuan Wu^{1*}, Changkyu Choi^{3*}, Xiangcheng Cao⁴, Volkan Cevher⁴, Ali Ramezani-Kebrya^{1,2}

¹University of Oslo ²Integreat, Norwegian Centre for Knowledge-driven Machine Learning ³UiT The Arctic University of Norway ⁴LIONS, EPFL

Motivation

Label Shift

In real-world applications, the label distribution p(y) may change from training and test, while the conditional distribution p(x|y) remains unchanged.

Challenge in Distributed Learning

In multi-node setups, each node may face both intra-node and inter-node label shifts. Standard ERM is insufficient to address this distributional heterogeneity.

Goal

- Estimate local label shift ratios from few unlabeled test samples, with statistical guarantees.
- Train a global model robust to label shift, in a privacy-preserving distributed framework.

Key Idea

- VRLS: Entropy-regularized predictor and density ratio estimation.
- IW-ERM: Weighted ERM using local ratio estimates to optimize true test risk.

Problem Setup under Single-Node Case

Importance Ratio under Label Shift

Given training data $(\boldsymbol{x}_i, \boldsymbol{y}_i) \sim p^{\text{tr}}$ and test data $(\boldsymbol{x}_i, \boldsymbol{y}_i) \sim p^{\text{te}}$, define the importance ratio as:

$$m{r}(m{y}) = rac{p^{ ext{te}}(m{y})}{p^{ ext{tr}}(m{y})}.$$

Entropy Regularization

Train $f_{\theta}(\boldsymbol{x})$ to approximate $p^{\text{tr}}(\boldsymbol{y}|\boldsymbol{x})$ using cross-entropy loss with entropy-based regularization:

$$\Omega(f_{\boldsymbol{\theta}}) = \sum_{c=1}^{m} \operatorname{softmax}[f_{\boldsymbol{\theta}}(\boldsymbol{x})]_{c} \log (\operatorname{softmax}[f_{\boldsymbol{\theta}}(\boldsymbol{x})]_{c}).$$

Why Entropy?

Helps mitigate overconfidence, improving calibration for ratio estimation.

VRLS Algorithm

Input: Training set $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^{n_{\text{tr}}}$ and unlabeled test set $\{\boldsymbol{x}_j\}_{j=1}^{n_{\text{te}}}$.

Train predictor:

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \Theta} \left[\frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \ell_{\text{CE}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i \right) + \zeta \Omega(f_{\boldsymbol{\theta}}) \right]$$

Estimate importance ratio:

$$\hat{m{r}} = rg \max_{m{r} \in \mathbb{R}_+^m} \ rac{1}{n_{ ext{te}}} \sum_{j=1}^{n_{ ext{te}}} \log \left[f_{\hat{m{ heta}}}(m{x}_j)^{ op} m{r}
ight]$$

Apply \hat{r} : Distributed training with importance weighting.

Multi-Node Extension

Setup: For a system of K nodes, each node k has training distribution p_k^{tr} and test distribution p_k^{te} . A global model $h_{\boldsymbol{w}}: \mathcal{X} \to \mathcal{Y}$ is trained across all nodes. Under label shift:

$$r_k(oldsymbol{y}) = rac{\sum_{j=1}^K p_j^{ ext{te}}(oldsymbol{y})}{p_k^{ ext{tr}}(oldsymbol{y})}.$$

Local Risk: Each node k aims to minimize its true expected test risk:

$$R_k(h_w) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_k^{ ext{te}}} \left[\ell(h_w(\boldsymbol{x}), \boldsymbol{y}) \right].$$

IW-ERM with VRLS in Distributed Learning

Phase 1: Local Ratio Estimation (VRLS)

- Each node $k \in [K]$ estimates its local label shift ratio \hat{r}_k by performing the following steps:
 - ▶ Train a local predictor $\hat{f}_{k,\theta}$ with entropy regularization.
 - \blacktriangleright Estimate the importance ratio $\hat{\boldsymbol{r}}_k$ by optimizing the VRLS objective on local test data.

Phase 2: Ratio Aggregation

ullet Each node transmits its local label shift estimate $\hat{m{r}}_k$ to a central aggregator. The final estimate is:

$$\hat{m{r}}_k(m{y}) = rac{1}{\hat{p}_k^{ ext{tr}}(m{y})} \sum_{j=1}^K \hat{p}_j^{ ext{te}}(m{y}).$$

Phase 3: Global IW-ERM Training

 \bullet Train global model $h_{\boldsymbol{w}}$ with reweighted loss that incorporates the estimated label shift ratios:

$$\min_{oldsymbol{w}} \sum_{k=1}^K rac{1}{n_k^{ ext{tr}}} \sum_{i=1}^{n_k^{ ext{tr}}} \hat{oldsymbol{r}}_k(oldsymbol{y}_{k,i}) \, \ell(h_{oldsymbol{w}}(oldsymbol{x}_{k,i}), oldsymbol{y}_{k,i}).$$

Output: A global model $h_{\boldsymbol{w}}$ adapted to heterogeneous label shifts across distributed nodes.

Theoretical Highlights

Ratio Estimation:

Under mild assumptions, the VRLS estimator \hat{r} converges to the true optimum r_f^* with high probability:

$$\|\hat{\boldsymbol{r}} - \boldsymbol{r}_f^{\star}\| \le O\left(\frac{1}{\sqrt{n^{\text{te}}}}\right) + \text{calib. error}(\boldsymbol{\theta}, \boldsymbol{\theta}^{*}),$$

due to the MLE structure and bounded softmax outputs.

Distributed Convergence:

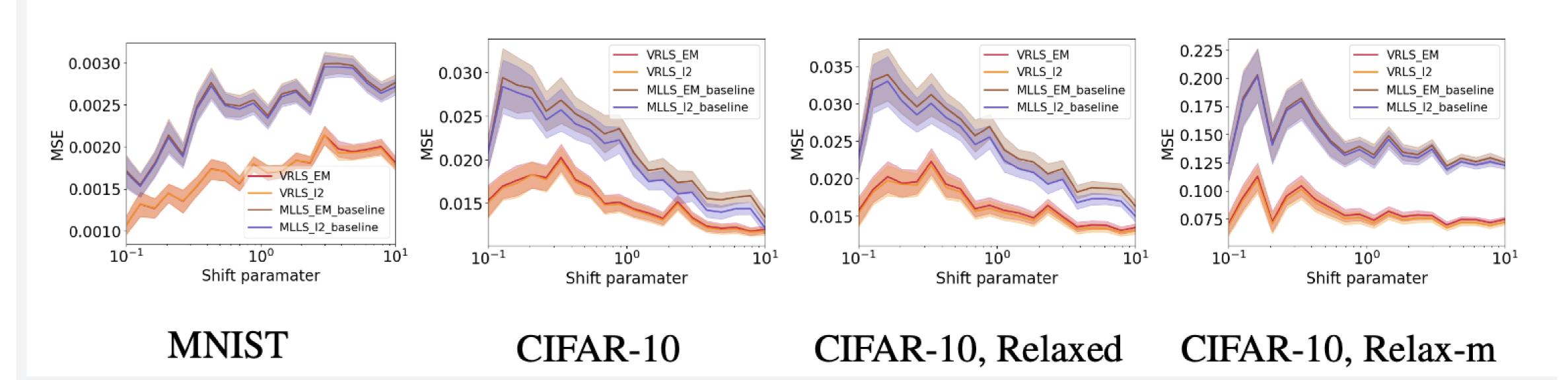
Let h(T) denote the baseline convergence rate (e.g., $O(\frac{1}{\sqrt{T}})$ for SGD). IW-ERM with VRLS satisfies: $\ell(h_{\boldsymbol{w}}) - \ell^* \leq O(R_{\max}) \cdot h(T)$.

Communication overhead is minimal: each node transmits only a one-shot \hat{r}_k , preserving privacy and incurring no extra per-iteration cost.

Experiments and Results

Single-Node Ratio Estimation:

- Datasets: MNIST and CIFAR-10, with synthetic label shift severity α .
- VRLS achieves lower MSE compared to EM-based baseline.



Multi-Node Setup:

- Up to 200 nodes, each with local distributions p_k^{tr} and p_k^{te} .
- Our IW-ERM with VRLS outperforms FedAvg, FedProx, etc.
- Each node transmits its local $\hat{\boldsymbol{r}}_k$ once to the server; no raw data is shared.

Accuracy across 100 Nodes on Fashion-MNIST:

Method	Accuracy
IW-ERM	0.7520 ± 0.0209
IW-ERM (small)	0.7376 ± 0.0099
FedAvg	0.5472 ± 0.0297
FedBN	0.5359 ± 0.0306
FedProx	0.5606 ± 0.0070
SCAFFOLD	0.5774 ± 0.0036
Upper Bound	0.8273 ± 0.0041

Accuracy across varying node numbers on CIFAR-10:

 Nodes IW-ERM
 FedAvg
 FedBN

 100
 0.5354
 0.3915
 0.1537

 200
 0.6216
 0.5942
 0.1753

Future Directions

Beyond $p(\boldsymbol{x}|\boldsymbol{y})$ invariance: handling mixed or relaxed shift conditions. Improving ratio estimation: tighter generalization bounds and faster statistical convergence.

Scaling VRLS to large-scale and privacy-preserving distributed systems.

Acknowledgments

Experiments were done on UiO Sigma2 resources. This work was supported by the Research Council of Norway through Integreat, Norwegian Centre for Knowledge-driven Machine Learning (332645) and Visual Intelligence, Norwegian Centre for Research-based Innovation (309439). The work of Volkan Cevher was supported by the Hasler Foundation Program: Hasler Responsible AI (21043), the Army Research Office (W911NF-24-1-0048), and the Swiss National Science Foundation (200021-205011).