Learning Long Range Dependencies on Graphs via Random Walks

Dexiong Chen, Till Hendrik Schulz, Karsten Borgwardt

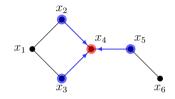
Max Planck Institute of Biochemistry

ICLR 2025

Graph Neural Networks: Two Approaches

Message-passing GNNs

- Strong at capturing local relationships
- Struggle with long-range dependencies
- Issues: over-smoothing and over-squashing



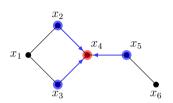
Graph Neural Networks: Two Approaches

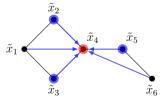
Message-passing GNNs

- Strong at capturing local relationships
- Struggle with long-range dependencies
- Issues: over-smoothing and over-squashing

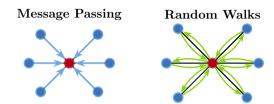
Graph transformers

- Enable global information exchange
- Oversimplify graph structure with fixed-length vectors
- Sacrifice structural richness for global reach





The Challenge



- Message passing: breadth-first, struggle with long-range dependencies.
- Random walks: naturally depth-first, effective for long-range relationships, inefficient for local relationships.

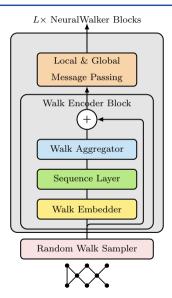
Message Passing Random Walks

- Message passing: breadth-first, struggle with long-range dependencies.
- Random walks: naturally depth-first, effective for long-range relationships, inefficient for local relationships.

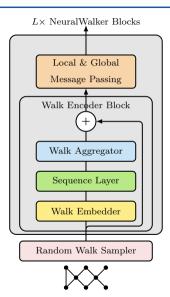
Our Insight: Combine the strengths of both approaches.

Key components

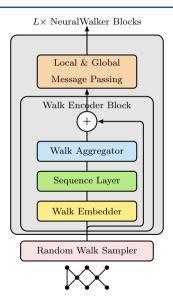
Random Walk Sampler: Samples walks with positional encodings



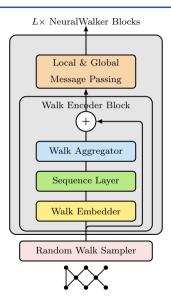
- Random Walk Sampler: Samples walks with positional encodings
- Walk Embedder: Computes walk embeddings from node/edge features



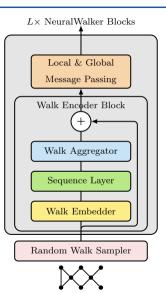
- Random Walk Sampler: Samples walks with positional encodings
- Walk Embedder: Computes walk embeddings from node/edge features
- Sequence Layer: Processes walks using advanced sequence models



- Random Walk Sampler: Samples walks with positional encodings
- Walk Embedder: Computes walk embeddings from node/edge features
- Sequence Layer: Processes walks using advanced sequence models
- Walk Aggregator: Pools features across walks into nodes



- Random Walk Sampler: Samples walks with positional encodings
- Walk Embedder: Computes walk embeddings from node/edge features
- Sequence Layer: Processes walks using advanced sequence models
- Walk Aggregator: Pools features across walks into nodes
- Local & Global Message Passing: Complements walk information



• Explicit walk sequences rather than compressed structural encodings

- Explicit walk sequences rather than compressed structural encodings
- Leveraging sequence models for random walks:
 - CNNs
 - Transformers
 - State Space Models (Mamba, S4)

- Explicit walk sequences rather than compressed structural encodings
- Leveraging sequence models for random walks:
 - CNNs
 - Transformers
 - State Space Models (Mamba, S4)
- Complementary message passing to address limitations of random walks alone

- Explicit walk sequences rather than compressed structural encodings
- Leveraging sequence models for random walks:
 - CNNs
 - Transformers
 - State Space Models (Mamba, S4)
- Complementary message passing to address limitations of random walks alone
- Theoretical guarantees:
 - More expressive than 1-WL and k-subgraph isomorphism tests
 - Lipschitz continuity for stability
 - Linear complexity in graph size

Experimental Results

Dataset	SOTA	CRaWL	NeuralWalker
ZINC ↓	0.070	0.085	0.053
MNIST ↑	98.39	97.944	98.692
CIFAR10 ↑	76.853	69.013	76.903
PATTERN ↑	87.196	_	86.977
CLUSTER ↑	80.026	-	78.189
PascalVOC-SP ↑	0.4440	-	0.4912
COCO-SP ↑	0.3974	_	0.4398
Peptides-func ↑	0.7133	0.7074	0.7096
Peptides-struct \downarrow	0.2455	0.2506	0.2463
$PCQM$ -Contact \uparrow	0.4703	-	0.4707
Pokec ↑	86.10	-	86.46

Check out our paper for more results!

Key results:

- SOTA on multiple datasets.
- Up to +13% improvement on PascalVOC-SP and COCO-SP.
- Significantly outperforms previous random walk-based model (CRaWL).
- Successfully scales to large graphs (> 1M nodes).

[Tönshoff et al., 2023] 6/9

Ablation Studies: Model Components

Sequence layer performance

• SSM > CNN > Transformer

Message passing impact

- Consistent improvement with local message passing
- Variable benefits from global message passing

Random walk parameters

- Performance vs. computational cost tradeoff
- Can be explicitly controlled through the walk sampling number and length

Masked Positional Encoding Pretraining

Novel pretraining strategy:

- Randomly mask 15% of positions in positional encodings
- Train model to recover original binary encoding vectors
- Combine with attribute masking pretraining

Masked Positional Encoding Pretraining

Novel pretraining strategy:

- Randomly mask 15% of positions in positional encodings
- Train model to recover original binary encoding vectors
- Combine with attribute masking pretraining

Result: Significant performance boost on ZINC dataset $(0.063 \rightarrow 0.053)$

Conclusions

Contributions

- Novel framework combining random walks with message passing
- Leveraging powerful sequence models for walk encoding
- Theoretical guarantees of expressiveness
- SOTA performance on multiple benchmarks

References I

- D. Chen, L. O'Bray, and K. Borgwardt. Structure-aware transformer for graph representation learning. In *International Conference on Machine Learning (ICML)*, 2022.
- L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- E. Rosenbluth, J. Tönshoff, M. Ritzert, B. Kisin, and M. Grohe. Distinguished in uniform: Self-attention vs. virtual nodes. In *International Conference on Learning Representations (ICLR)*, 2024.
- J. Tönshoff, M. Ritzert, H. Wolf, and M. Grohe. Walking out of the weisfeiler leman hierarchy: Graph learning beyond message passing. *Transactions on Machine Learning Research (TMLR)*, 2023.
- K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations (ICLR)*, 2019.