

Learning a Neural Solver for Parametric PDEs to Enhance Physics-Informed Methods

Lise Le Boudec ¹, Emmanuel de Bezenac ², Louis Serrano ¹, Ramon Daniel Regueiro-Espino ¹, Yuan Yin ³, Patrick Gallinari ^{1,4}

¹ Sorbonne Université, CNRS, ISIR, F-75005 Paris, France

² INRIA Paris, France

³ Valeo.ai, Paris, France

⁴ Criteo AI Lab, Paris, France

• We focus on solving **parametric** PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

• Existing methods:

Traditional solvers

+ Theoretical guaranty

- Computationally demanding

Physics-informed Neural Networks

- + No data required
- Slow to optimize
 Require one training per
 PDE

Data-driven Methods / Neural Operators

- + Fast inference for new PDEs
 - A lot of data required

We focus on solving parametric PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Existing methods:

Traditional solvers

+ Theoretical guarantee

- Computationally demanding

Physics-informed Neural Networks

- + No data required
- Slow to optimize
 Require one training per
 PDE

Data-driven Methods / Neural Operators

- + Fast inference for new PDEs
 - A lot of data required

We focus on solving parametric PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Existing methods:

Traditional solvers

+ Theoretical guarantee

- Computationally demanding

Physics-informed Neural Networks

+ No data required

- Slow to optimize

Require one training per PDE

Data-driven Methods / Neural Operators

+ Fast inference for new PDEs

- A lot of data required

• We focus on solving parametric PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Existing methods:

Traditional solvers

+ Theoretical guarantee

- Computationally demanding

Physics-informed Neural Networks

+ No data required

- Slow to optimize

Require one training per PDE

Data-driven Methods / Neural Operators

+ Fast inference for new PDEs

- A lot of data required

• We focus on solving parametric PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Existing methods:

Traditional solvers

+ Theoretical guarantee

- Computationally demanding

Physics-informed Neural Networks

+ No data required

- Slow to optimize
- Require one training per PDE

Data-driven Methods / Neural Operators

+ Fast inference for new PDEs

- A lot of data required

We focus on solving parametric PDEs

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Existing methods:

Physics-informed Neural Networks

- + No data required
- Slow to optimize
 Require one training per

PDE

$$\mathcal{L}_{ ext{PDE}} = \mathcal{L}_{ ext{Res}} + \lambda \mathcal{L}_{ ext{BC}}, \quad , \lambda > 0$$
 $\mathcal{L}_{ ext{Res}} = \sum_{x_j \in \Omega} |\mathcal{N}(u_{\Theta}; \gamma)(x_j) - f(x_j)|^2$
 $\mathcal{L}_{ ext{BC}} = \sum_{x_j \in \partial \Omega} |\mathcal{B}(u_{\Theta})(x_j) - g(x_j)|^2$

Objective

Learning an iterative algorithm that efficiently solves PDEs

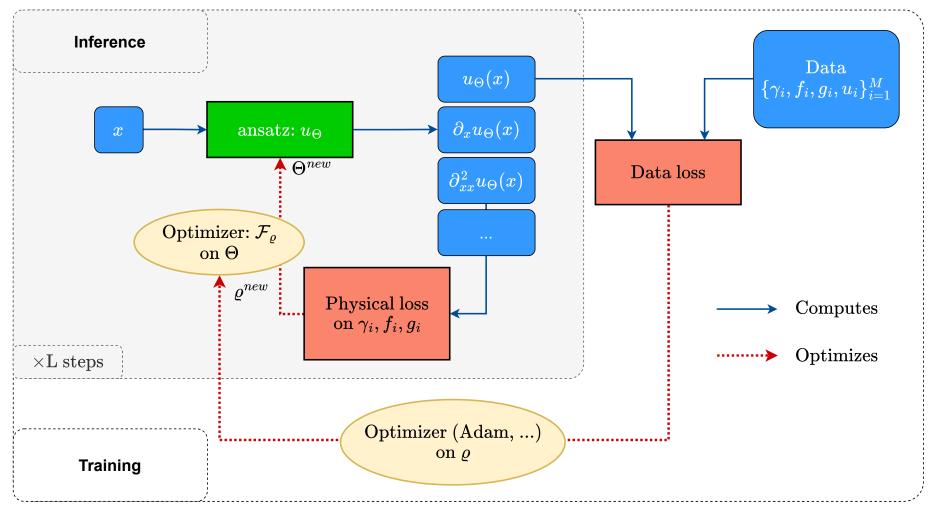
- + Solving from the PDE residual
- + Fast solving of new PDEs (L small)
- + No retraining needed

Assume we have access to samples of PDE parameters and the associated target solutions, sampled at some colocation points.

Algorithm 1: Inference using the neural PDE solver.

Data:
$$\Theta_0 \in \mathbb{R}^n$$
, PDE (γ, f, g)
Result: $\Theta_L \in \mathbb{R}^n$
for $l = 0...L-1$ do
 $\mid \Theta_{l+1} = \Theta_l - \eta \mathcal{F}_{\varrho}(\nabla \mathcal{L}_{PDE}(\Theta_l), \gamma, f, g)$
end
return Θ_L

Approach



Optimization scheme of a physics-informed method with our framework.

More about Neural solver

