

AVHBench: A Cross-Modal Hallucination Benchmark for Audio-visual Large Language Models

Kim Sung-Bin*¹ Oh Hyun-Bin*¹ Lee Jung-Mok¹ Arda Senocak² Joon Son Chung² Tae-Hyun Oh³

¹Deptartment of Electrical Engineering, POSTECH ²School of Electrical Engineering, KAIST ³School of Computing, KAIST

*Equal contribution

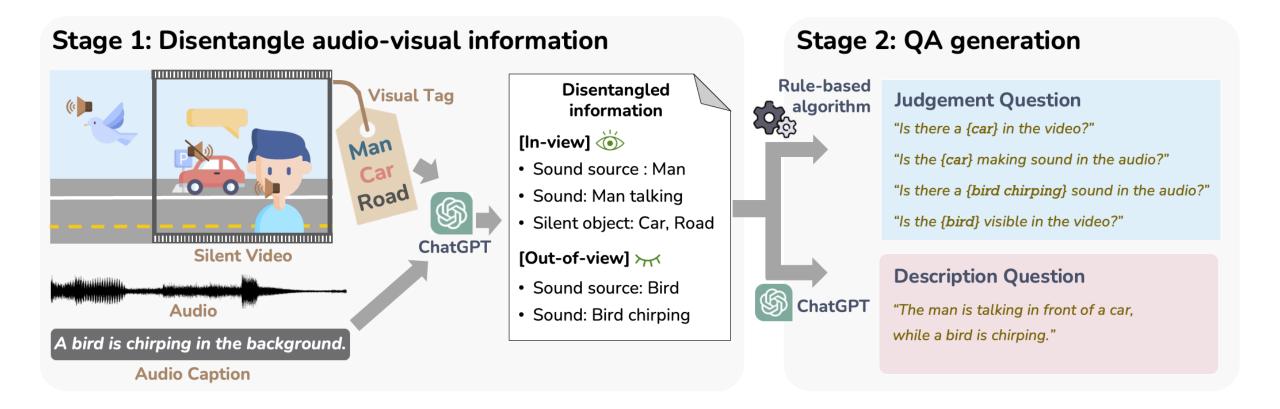
Email: sungbin@postech.ac.kr hyunbinoh@postech.ac.kr

• Recent advancements have expanded capabilities toward human-like video understanding through audio-visual Large Language Models (AV-LLMs)

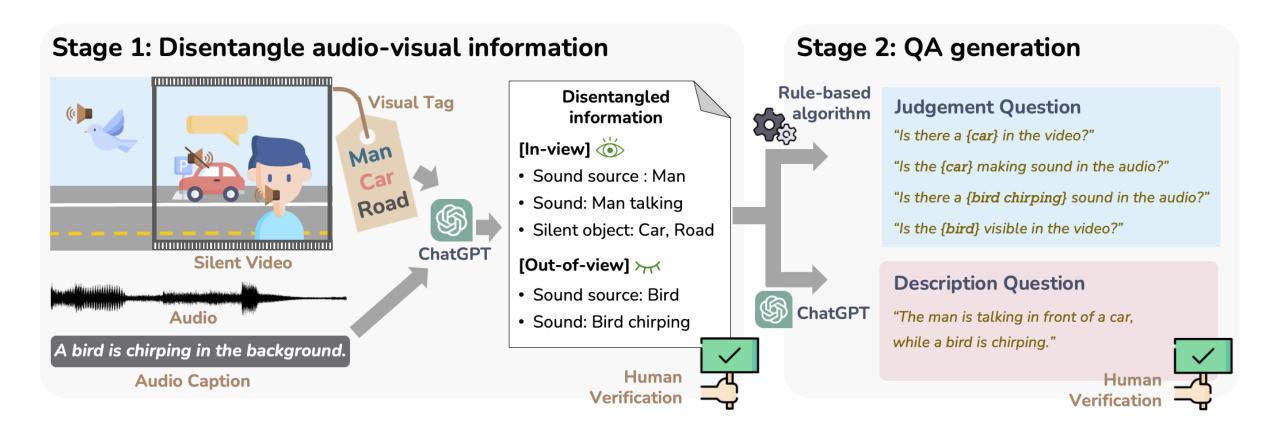
- Recent advancements have expanded capabilities toward human-like video understanding through audio-visual Large Language Models (AV-LLMs)
- However, AV-LLMs are prone to cross-modal hallucinations:
 - Hearing imaginary sounds from visual cues
 - Perceiving fake visual events from audio cues

- Recent advancements have expanded capabilities toward human-like video understanding through audio-visual Large Language Models (AV-LLMs)
- However, AV-LLMs are prone to cross-modal hallucinations:
 - Hearing imaginary sounds from visual cues
 - Perceiving fake visual events from audio cues
- Currently, no suitable benchmark exists to validate such hallucinations

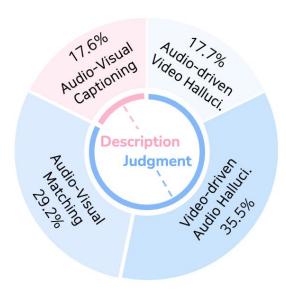
- Recent advancements have expanded capabilities toward human-like video understanding through audio-visual Large Language Models (AV-LLMs)
- However, AV-LLMs are prone to cross-modal hallucinations:
 - Hearing imaginary sounds from visual cues
 - Perceiving fake visual events from audio cues
- Currently, no suitable benchmark exists to validate such hallucinations


A benchmark is needed to evaluate the perception and comprehension capabilities of AV-LLMs regarding hallucinations

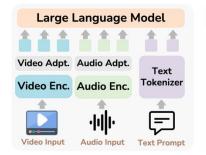
Audio-visual Hallucination Benchmark

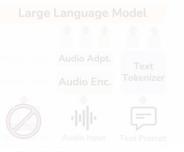

- Propose Audio-Visual Hallucination Benchmark (AVHBench)
- Tasks in the benchmark (J: judgment / D: description)
 - [J] Audio-driven video hallucination
 - [J] Video-driven audio hallucination
 - [J] Audio-visual matching
 - [D] Audio-visual captioning

Semi-automatic dataset construction pipeline



Semi-automatic dataset construction pipeline


Overall dataset statistics


- Judgment tasks
 - Total 2,136 videos with 5,816 QnA pairs
 - Equally distributed yes/no answers
- Description task
 - Total 1,238 videos with corresponding captions

Task Type	Task	# QnA pairs	# Yes	# No	# captions	
	$A {\rightarrow} V$	1,250	625	625	-	
Judgment	$V {\rightarrow} A$	2,508	1,254	1,254	-	
	A-V Mat.	2,058	1,029	1,029	-	
Description	A-V Cap.	-	-	-	1,238	
	Total	5,816	2,908	2,908	1,238	

(a) Multi-modal Inputs

(b) Uni-modal Inputs

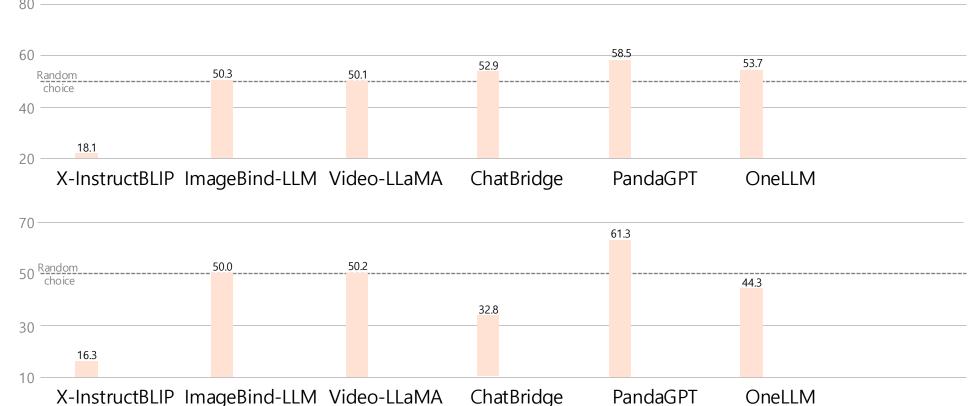
(c) Caption Inputs

	Audio-driven Video Hallucination						Video-driven Audio Hallucination					
Model	Acc. (†)	Precision (†)	Recall (†)	F1 (†)	Yes (%)	Acc. (†)	Precision (†)	Recall (†)	F1 (†)	Yes (%)		
X-InstructBLIP	18.1	16.0	15.0	15.5	46.9	16.3	14.5	38.5	21.1	77.0		
ImageBind-LLM	50.3	50.2	87.1	63.7	86.7	50.0	50.0	99.3	66.5	99.3		
Video-LLaMA	50.1	50.1	100	66.7	99.9	50.2	50.2	100	66.9	100		
ChatBridge	52.9	70.9	52.9	48.9	77.6	32.8	60.0	32.8	39.8	14.8		
PandaGPT	58.5	55.3	91.1	68.8	82.3	61.3	57.4	86.6	69.1	75.5		
OneLLM	53.7	58.6	64.8	49.8	63.1	44.3	50.2	39.4	49.8	55		
Random Choice	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0		

37.11		Audio	-visual Mat	ching	Audio-visual Captioning			
Model	Acc. (†)	Precision (†)	Recall (†)	F1 (†)	Yes (%)	METEOR (†)	CIDEr (↑)	GAVIE-A (†)
X-InstructBLIP	15.1	18.6	18.9	18.8	52.6	6.10	3.40	2.83
ImageBind-LLM	50.0	50.0	100	66.7	100	11.5	16.0	3.35
Video-LLaMA	50.0	50.0	100	66.7	100	14.0	9.5	2.29
ChatBridge	29.9	48.3	29.9	33.9	13.0	13.7	33.1	4.69
PandaGPT	51.2	53.6	18.1	27.0	16.8	11.7	14.1	2.70
OneLLM	60.1	67.7	61.9	64.6	53.9	5.41	28.8	1.47
Random Choice	50.0	50.0	50.0	50.0	50.0	-	-	-

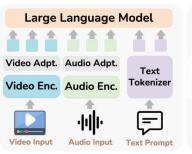
- Q1. Are AV-LLMs robust against cross-modal hallucinations?
- → No, they are vulnerable to cross-modal hallucinations

: (a) Multi-modal Inputs



Video-driven

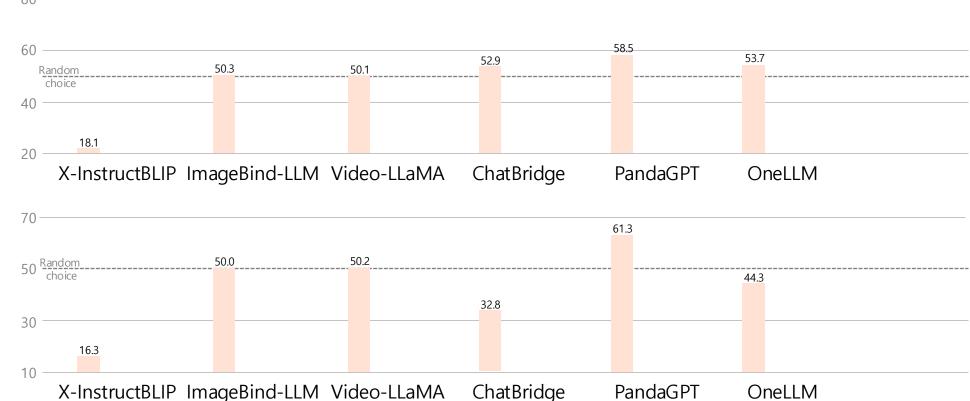
Audio Hallucination


(Accuracy (%))

- Q1. Are AV-LLMs robust against cross-modal hallucinations?
- → No, they are vulnerable to cross-modal hallucinations

: (a) Multi-modal Inputs

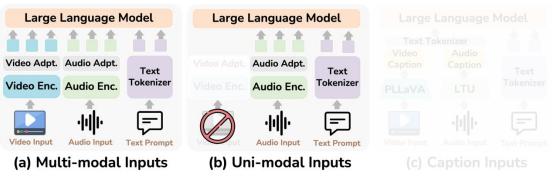
: (b) Uni-modal Inputs



(a) Multi-modal Inputs

(b) Uni-modal Inputs

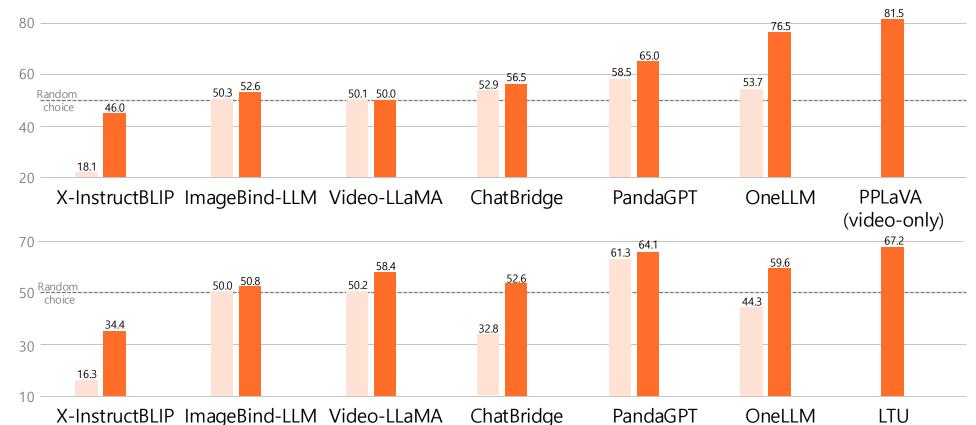
(c) Caption Inputs



Video-driven
Audio Hallucination
(Accuracy (%))

Q2. Are multi-modal inputs really helpful?

- : (a) Multi-modal Inputs
- : (b) Uni-modal Inputs

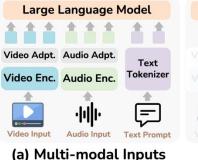


Audio-driven
Video Hallucination
(Accuracy (%))

Video-driven

Audio Hallucination

(Accuracy (%))

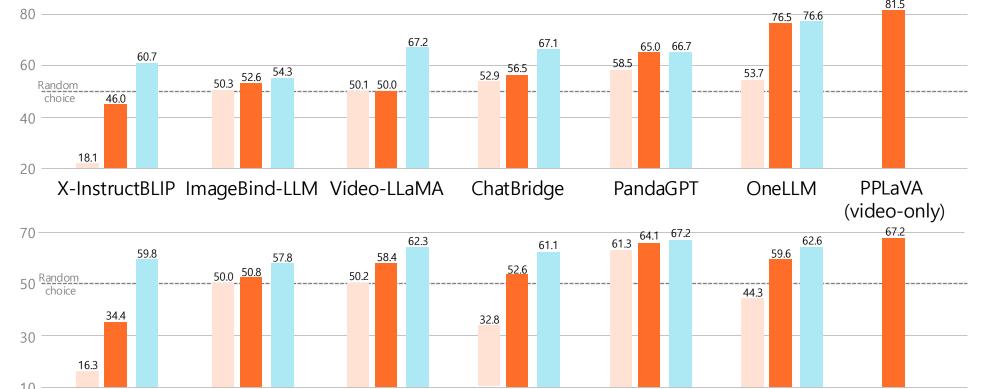

- Q2. Are multi-modal inputs really helpful?
- → No, multi-modal signals tend to confuse the models' perception

(audio-only)

Large Language Model Large Language Model Large Language Model Results and analysis Text Tokenizer /ideo Adpt. Audio Adpt. Audio Adpt. Caption Caption Tokenizer Video Enc. Audio Enc. Audio Enc. **PLLaVA** : (a) Multi-modal Inputs : (b) Uni-modal Inputs : (c) Caption-modal Inputs (b) Uni-modal Inputs (c) Caption Inputs (a) Multi-modal Inputs **Audio-driven** 58.5 53.7 52.9 **Video Hallucination** (Accuracy (%)) X-InstructBLIP ImageBind-LLM Video-LLaMA ChatBridge **PandaGPT** OneLLM **PPLaVA** (video-only) 61.3 59.6 58.4 44.3 Video-driven 32.8 **Audio Hallucination** 30 (Accuracy (%)) 16.3 X-InstructBLIP ImageBind-LLM Video-LLaMA ChatBridge **PandaGPT** OneLLM LTU

Q3. What could be the potential reason behind these hallucinations? (audio-only)

- : (a) Multi-modal Inputs
- : (b) Uni-modal Inputs
- : (c) Caption-modal Inputs


OneLLM

Large Language Model

(b) Uni-modal Inputs (c) C

Audio-driven
Video Hallucination
(Accuracy (%))

ChatBridge

PandaGPT

- Video-driven
 Audio Hallucination
 (Accuracy (%))
- Q3. What could be the potential reason behind these hallucinations?

X-InstructBLIP ImageBind-LLM Video-LLaMA

→ The LLM's limited capacity to handle complex multi-modal signals

LTU

(audio-only)

Align.	FT	$A \rightarrow V$	$A \rightarrow V$ $A \rightarrow V$		V→A	A-V	Audio-visual Captioning			
1 1118111		(multi.)	(uni.)	(multi.)	(uni.)	Mat.	METEOR (†)	CIDEr (↑)	GAVIE-A (†)	
_	-	50.1	50.0	50.2	55.7	50.0	14.0	9.5	2.29	
\checkmark	-	52.8	50.4	58.1	63.5	51.3	9.5	18.9	3.49	
-	\checkmark	79.1	84.0	76.6	80.6	50.8	11.9	33.1	3.54	
\checkmark	\checkmark	83.9	85.2	77.3	81.1	55.6	12.2	35.6	3.82	

Enhancing robustness against cross-modal hallucinations

Q4. Can AV-LLMs be improved against cross-modal hallucinations?

→ Yes, by (1) enhancing the feature alignment, and (2) fine-tuning with LoRA

Align.	FT	$A \rightarrow V$	$A \rightarrow V$			A-V	Audio	Audio-visual Captioning			
1 1118111		(multi.)	(uni.)	(multi.)	(uni.)	Mat.	METEOR (†)	CIDEr (↑)	GAVIE-A (†)		
_	-	50.1	50.0	50.2	55.7	50.0	14.0	9.5	2.29		
\checkmark	-	52.8	50.4	58.1	63.5	51.3	9.5	18.9	3.49		
-	\checkmark	79.1	84.0	76.6	80.6	50.8	11.9	33.1	3.54		
\checkmark	\checkmark	83.9	85.2	77.3	81.1	55.6	12.2	35.6	3.82		

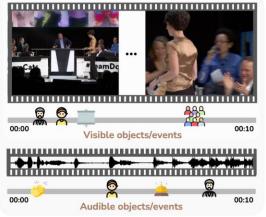
Enhancing robustness against cross-modal hallucinations

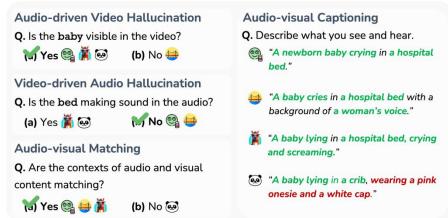
Align.	FT		VAST		AVinstruct					
1 1118111		METEOR (†)	CIDEr (†)	GAVIE-A (†)	METEOR (†)	CIDEr (†)	ROUGE-L (†)	BLEU-4 (†)	Acc. (%)	
-	-	18.2	0.2	4.04	45.9	14.5	35.3	12.8	43.6	
\checkmark	-	19.2	20.7	3.68	42.2	27.1	41.5	14.9	52.6	
-	\checkmark	18.7	13.4	2.58	53.5	76.4	52.3	25.1	44.2	
\checkmark	\checkmark	22.1	47.6	5.09	58.1	102.0	55.8	28.5	57.8	


Generalization performance on other audio-visual reasoning dataset

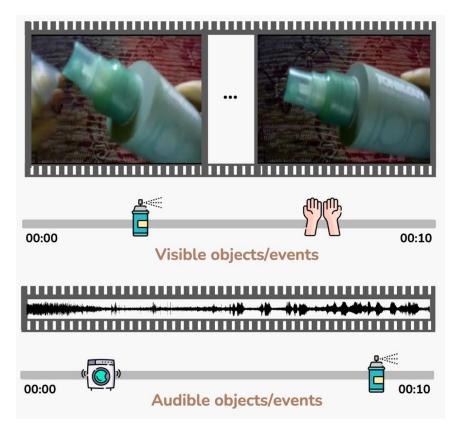
- Q4. Can AV-LLMs be improved against cross-modal hallucinations?
- → Yes, by (1) enhancing the feature alignment, and (2) fine-tuning with LoRA

Qualitative results of AV-LLMs on AVHBench




Green: correct answer **Red:** Incorrect answer

Quiz Show



Baby Crying 22

Which modalities do AV-LLMs attend to answer?

• We visualize the attention maps of the LLM layers in the AV-LLMs

Input Video & Audio

Q. Is the bottle making sound in the audio?

Q. Is the mechanical device visible in the video?

Conclusion

• Introducing AVHBench, a cross-modal hallucination benchmark for evaluating recent AV-LLMs

Conclusion

- Introducing AVHBench, a cross-modal hallucination benchmark for evaluating recent AV-LLMs
- Analyzing the phenomena of AV-LLMs using AVHBench
 - Susceptibility to cross-modal hallucinations when provided with multi-modal inputs
 - Tendency to perform better with uni-modal or text-only inputs compared to multi-modal

Conclusion

- Introducing AVHBench, a cross-modal hallucination benchmark for evaluating recent AV-LLMs
- Analyzing the phenomena of AV-LLMs using AVHBench
 - Susceptibility to cross-modal hallucinations when provided with multi-modal inputs
 - Tendency to perform better with uni-modal or text-only inputs compared to multi-modal
- Enhancing feature alignment and the capacity to handle multi-modal signal could improve AV-LLMs' robustness against hallucinations

