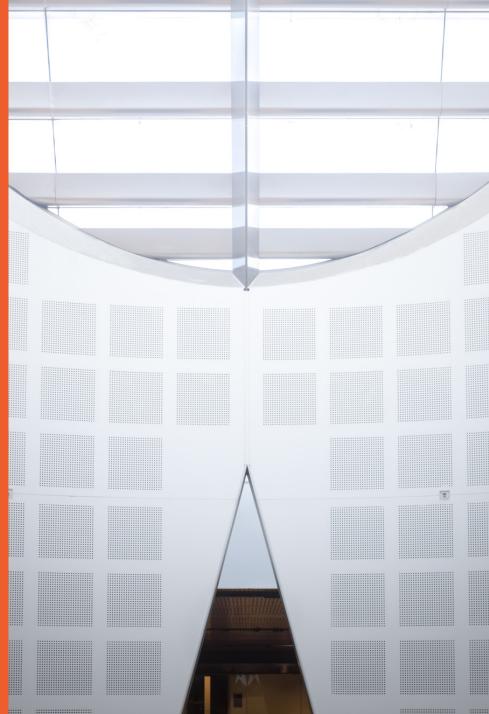


Presented by Tianming Zhao

Authors:

<u>Tianming Zhao</u>, Chunqiu Xia, Xiaomin Chang, Chunhao Li, Wei Li, Albert Y. Zomaya

School of Computer Science



Fair Scheduling with Predictions

Background

Algorithms with predictions (aka learning-augmented algorithms) leverage possibly erroneous predictions to improve decision-making beyond worst-case guarantees.

Problem

- Single machine non-clairvoyant scheduling to minimize max-stretch.
 - $-S_j = \frac{C_j r_j}{n^*}$ (stretch of job J_i)
 - C_j (completion time), r_j (release time), P_j^* (job size, i.e., processing time) max-stretch = $\max_{1 \le j \le n} S_j = \max_{1 \le j \le n} \frac{C_j r_j}{p_i^*}$
- Max-stretch is a fairness measure.
- Job sizes p_j^* are unknown when the job arrives, but a prediction p_j is known. The predictions might not be accurate, and we use $\eta = \max_{1 \le j \le n} \max_{1 \le j \le n} \max\{p_j^*/p_j, p_j/p_j^*\}$ to represent the total prediction error.

Question: How to perform fair scheduling with imperfect information?

Key Results

Improved fairness in scheduling

We propose a family of algorithms for <u>different prediction models</u>. In particular, Relaxed-Greedy (RG) achieves an $O(\eta^3 \sqrt{P})$ competitive ratio, where P is the maximum job size ratio.

Consistency-smoothness trade-off

We show how consistency and smoothness trade-off can be achieved by introducing a parametrized algorithm called RG^x .

Enhanced robustness via resource augmentation

The algorithms we initially have suffered poor robustness. We propose to use resource augmentation to address this issue.

Algorithm Overview

Overview

- Key idea: Reduce the problem to two-job-size case (short vs. long jobs) using predictions. If there are only two job sizes, the jobs of the same type should be processed in a FIFO manner.
- Classify jobs based on job size predictions: job J_j short if $p_j \leq \sqrt{p_{\min}p_{\max}}/\mu$, else long.
- Approximate the stretch using $(C_j r_j)/\sqrt{p_{\min}p_{\max}}$ for a short job and $(C_j r_j)/p_{\max}$ for a long job; this is called the *relaxed stretch*.
- Greedily schedule the jobs by always running the one with a minimal relaxed stretch.

Analysis

- Classifying the jobs into short and long overestimates the job size by $\eta^2\sqrt{P}$, but the problem is reduced to the two-job-size case.
- The greedy heuristic minimizes the relaxed stretch within a constant factor.
- The optimal relaxed stretch is bounded by η times the optimal max-stretch.
- Therefore, the max-stretch bound of our algorithm is $O(\eta^3 \sqrt{P})$ times the optimum.

Consistency-Smoothness Trade-offs

- How can we design algorithms that adapt to different levels of prediction confidence?
- Given a user-defined parameter x, use $\alpha = p_{\min}^x p_{\max}^{1-x} / \sqrt{3}$ to classify long/short jobs.
- The resulting algorithm RG^x has a competitive ratio of $O(\eta^{2+2x}P^{1-x})$.
- At x=0, RG^0 simplifies to FIFO (P-competitive), achieving the worst consistency O(P) but optimal smoothness O(1). At x=1/2, $RG^{1/2}$ is the Relaxed-Greedy with the best consistency $O(\sqrt{P})$ but the worst smoothness $O(\eta^3)$.
- RG^x interpolates FIFO and Relaxed-Greedy.

Bounding Robustness via Resource Augmentation

- All algorithms mentioned suffer poor robustness.
- We propose to use resource augmentation to address this issue.
- Suppose you have a $(1+\epsilon)$ -speed machine. Run RG in the unit-speed and Round-Robin (RR) in ϵ -speed. This yields a $(1+\epsilon)$ -speed $O(\min\{\eta^3\sqrt{P},n/\epsilon\})$ -competitive algorithm named RR-augmented RG.
- RR-augmented RG achieves the asymptotically optimal robustness.

Thank you

Contact me: tzha2101@gmail.com (Tianming Zhao)