Simple Guidance Mechanisms for Discrete Diffusion Models

Yair Schiff*

Subham Sahoo*

Hao Phung*

Guanghan Wang*

Sam Boshar

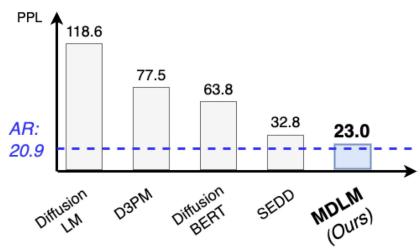
Hugo Dalla-torre

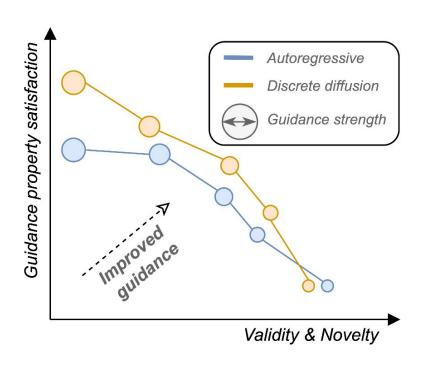
Bernardo P de Almeida

Alexander Rush

Thomas Pierrot

Volodymyr Kuleshov





Diffusion models: make "global" refinements

An ink sketch style illustration of a small hedgehog holding a piece of watermelon with its tiny paws, taking little bites with its eyes closed in delight.

The 'bling zoo' shop in new york city is both a jewelry store and zoo. sabertooth tigers with diamond and gold adornments...

Notation

 $s, t \text{ timesteps}, s < t \in [0, 1]$

 \mathbf{z}_t latent vector

Continuous: $\mathbf{z}_t \in \mathbb{R}^d$

Discrete: $\mathbf{z}_t^{(1:L)} \in |\mathcal{V}|^L$ (vocab \mathcal{V} , seq len L)

Guidance Background

Sample from conditional, tempered distribution

$$\mathbf{z}_s \sim p^{\gamma}(\mathbf{z}_s \mid \mathbf{z_t}, y)$$

Sample from conditional, tempered distribution

$$\mathbf{z}_s \sim p(\mathbf{z}_s \mid \mathbf{z}_t, y)$$

$$p(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t) \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

Sample from conditional, tempered distribution

$$\mathbf{z}_s \sim p^{\gamma}(\mathbf{z}_s \mid \mathbf{z_t}, y)$$

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t)^{\gamma} \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t)^{\gamma} \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

$$abla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t)^{\gamma} \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

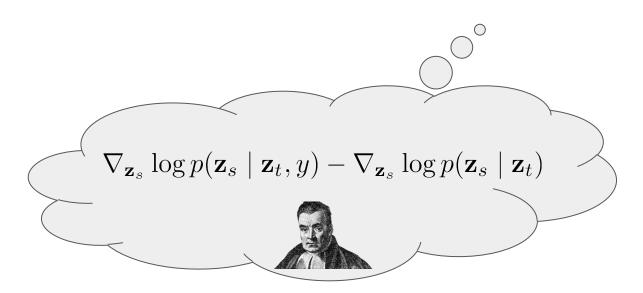
$$\nabla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$

Classifier-<u>based</u> guidance

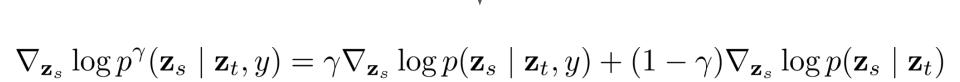
External classifier

Diffusion model

$$\nabla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$



$$\nabla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$



$$\nabla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$

$$\nabla_{\mathbf{z}_s} \log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t, y) + (1 - \gamma) \nabla_{\mathbf{z}_s} \log p(\mathbf{z}_s \mid \mathbf{z}_t)$$

Classifier-<u>free</u> guidance

Conditional diffusion model

Unconditional diffusion model

Discrete Guidance

Discrete:

Discrete: Back to the drawing board

$$\log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \log p(\mathbf{z}_s \mid \mathbf{z}_t) + const.$$

Discrete: Preview of where we'll end up

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto$$
 $(p_{\theta}) \cdot \text{(some other scaling distribution)}$

Discrete Classifier-Free Guidance

Discrete: Classifier-free guidance

$$\log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \log p(\mathbf{z}_s \mid \mathbf{z}_t) + const.$$

$$\gamma \log p(\mathbf{z}_s \mid \mathbf{z}_t, y) - \gamma \log p(\mathbf{z}_s \mid \mathbf{z}_t) + \underbrace{\gamma \log p(\mathbf{y} \mid \mathbf{z}_t)}_{\text{constant}}$$

Discrete: Classifier-free guidance

$$\log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \log p(y \mid \mathbf{z}_s, \mathbf{z}_t) + \log p(\mathbf{z}_s \mid \mathbf{z}_t) + const.$$

$$\log p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) = \gamma \log p(\mathbf{z}_s \mid \mathbf{z}_t, y) + (1 - \gamma) \log p(\mathbf{z}_s \mid \mathbf{z}_t) + const.$$

Conditional diffusion model

Unconditional diffusion model

Discrete Classifier-Based Guidance

Discrete: Classifier-based guidance

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t)^{\gamma} \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

Discrete: Classifier-based guidance

$$p^{\gamma}(\mathbf{z}_s \mid \mathbf{z}_t, y) \propto p(y \mid \mathbf{z}_s, \mathbf{z}_t)^{\gamma} \cdot p(\mathbf{z}_s \mid \mathbf{z}_t)$$

In practice, we model **sequences of text**, not just individual tokens

$$\mathbf{z} o \mathbf{z}^{(1:L)}$$

$$p(y \mid \mathbf{z}_s, \mathbf{z}_t) \to p(y \mid \mathbf{z}_s^{(1:L)}, \mathbf{z}_t^{(1:L)})$$

Assume $p^{\gamma}(\mathbf{z}_s^{(1:L)} \mid \mathbf{z}_t^{(1:L)}, y) = \prod_{\ell=1}^{L} p^{\gamma}(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)}, y)$

We will model this per token distribution instead

$$p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)}, y) \propto p(y \mid \mathbf{z}_s^{(\ell)}, \mathbf{z}_t^{(1:L)}) \cdot p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)})$$

$$p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)}, y) \propto p(y \mid \mathbf{z}_s^{(\ell)}, \mathbf{z}_t^{(1:L)}) \cdot \underbrace{p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)})}_{\text{[]}}$$

Model with discrete diffusion $p_{ heta}$

$$p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)}, y) \propto p(y \mid \mathbf{z}_s^{(\ell)}, \mathbf{z}_t^{(1:L)}) \cdot p(\mathbf{z}_s^{(\ell)} \mid \mathbf{z}_t^{(1:L)})$$

Train classifier on noisy sequences:

Evaluate it on sequences of the form:

$$p_{\phi}(\mathbf{z}_t^{(1:L)})$$
 $p_{\phi}(y \mid [\mathbf{z}_t^{(1:\ell-1)}, \mathbf{z}_s^{(\ell)}, \mathbf{z}_t^{(\ell+1:L)}])$

Putting it all together

Discrete Classifier-free guidance

$$p^{\gamma}(\mathbf{z}_{s}^{(\ell)} \mid \mathbf{z}_{t}^{(1:L)}, y) \propto p(\mathbf{z}_{s}^{(\ell)} \mid \mathbf{z}_{t}^{(1:L)}, y)^{\gamma} \cdot p(\mathbf{z}_{s}^{(\ell)} \mid \mathbf{z}_{t}^{(1:L)})^{(1-\gamma)}$$

Discrete Classifier-based guidance

$$p^{\gamma}(\mathbf{z}_{s}^{(\ell)} \mid \mathbf{z}_{t}^{(1:L)}, y) \propto p_{\phi}(y \mid [\mathbf{z}_{t}^{(1:\ell-1)}, \mathbf{z}_{s}^{(\ell)}, \mathbf{z}_{t}^{(\ell+1:L)}])^{\gamma} \cdot p(\mathbf{z}_{s}^{(\ell)} \mid \mathbf{z}_{t}^{(1:L)})$$

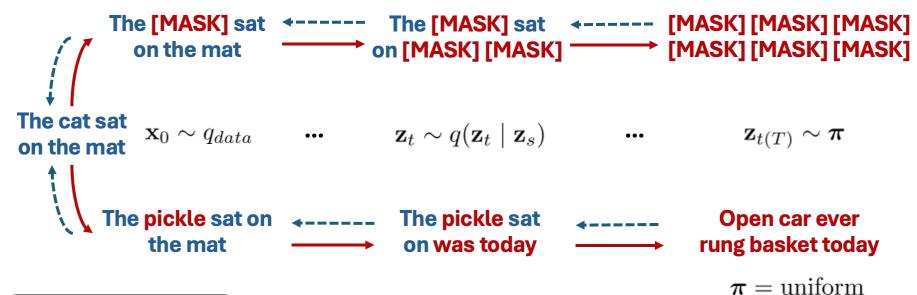
Uniform Diffusion Language Models

For Masked Diffusion Models, generated tokens are 'fixed'

$$q(\mathbf{z}_s \mid \mathbf{z}_t, \mathbf{x}) = \begin{cases} \operatorname{Cat}(\mathbf{z}_s; \mathbf{z}_t), & \mathbf{z}_t \neq \mathbf{m} \\ \operatorname{Cat}(\mathbf{z}_s; \frac{\alpha_s - \alpha_t}{1 - \alpha_t} \mathbf{x} + \frac{1 - \alpha_s}{1 - \alpha_t} \mathbf{m}), & \mathbf{z}_t = \mathbf{m} \end{cases}$$
Unmasked tokens are 'locked-in' (even if incorrect!)

$$p_{\theta}(\mathbf{z}_{s} \mid \mathbf{z}_{t}) = \begin{cases} \operatorname{Cat}(\mathbf{z}_{s}; \mathbf{z}_{t}), & \mathbf{z}_{t} \neq \mathbf{m} \\ \operatorname{Cat}(\mathbf{z}; \frac{\alpha_{s} - \alpha_{t}}{1 - \alpha_{t}} \mathbf{x}_{\theta} + \frac{1 - \alpha_{s}}{1 - \alpha_{t}} \mathbf{m}), & \mathbf{z}_{t} = \mathbf{m} \end{cases}$$

 π = absorbing state



Experiments

Table 1: UDLM performs best with smaller vocabs. Perplexity (↓) on various datasets. Best values are **bolded.** * indicates values reported from early stopping on the validation set; otherwise validation performance at the end of training is used. †From Sahoo et al. (2024a). *From Lou et al. (2023).

	Vocab.	AR	MDLM	UDLM
Species 10	12	2.88	3.17<	3.15<
QM9*	40	2.19	2.12 <	2.02<
CIFAR10	256	-	9.14 ⁻ <	$11.21^{-}_{<}$
text8	35	2.35 ^{\$}	2.62 <	2.71<
Amazon*	30,522	21.67	24.93<	27.27<
LM1B	30,522	22.32^{\dagger}	27.04^{+}	31.28<

Table 2: UDLM outperforms other uniform discrete diffusion on text8. Best value is **bolded** & best uniform diffusion value is <u>underlined</u>. †From Lou et al. (2023). *From Shi et al. (2024).

Method	BPC (↓)
Discrete Uniform Diffusion	
D3PM Uniform [†] (Austin et al., 2021)	1.61<
SEDD Uniform [†] (Lou et al., 2023)	$1.47^{-}_{<}$
UDLM (Ours)	1.44<

Table 3: UDLM outperforms other uniform discrete diffusion on LM1B. Best value is **bolded** & best discrete uniform diffusion value is <u>underlined</u>. †From Sahoo et al. (2024a). *From Lou et al. (2023). *From Austin et al. (2021).

Method	$PPL(\downarrow)$
Discrete Uniform Diffusion	
D3PM Uniform ^{\$} (Austin et al., 2021)	137.9≤
SEDD Uniform* (Lou et al., 2023)	40.25 <
UDLM (Ours)	31.28<

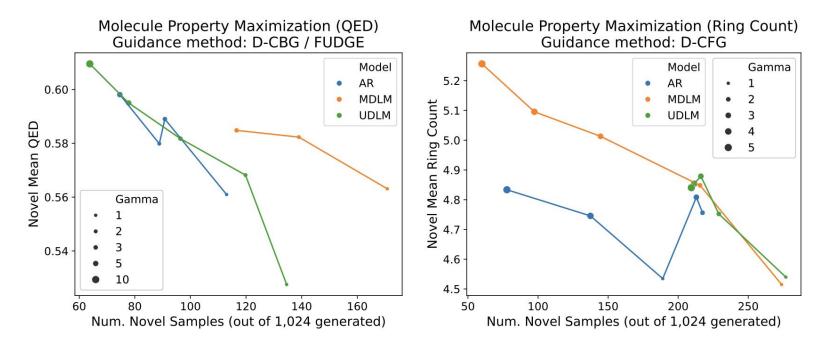
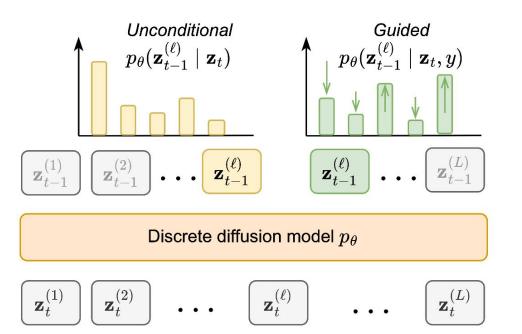
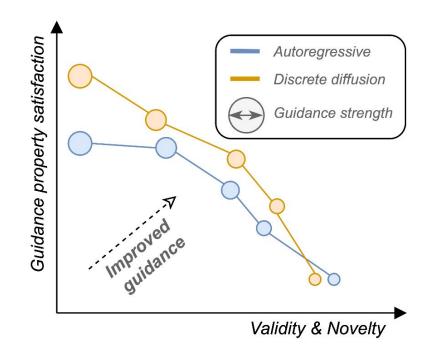


Figure 3: Diffusion models extend the steer-ability Pareto frontier. (*Left*) D-CBG outperforms FUDGE classifier guidance when maximizing drug-likeness (QED). (*Right*) D-CFG with diffusion better trades-off novel generation and ring-count maximization compared to AR.

Conclusion





Thank you!

Thursday April 24

Hall 3 + Hall 2B

Poster session 1

