

Causal Representation Learning from Multimodal Biomedical Observations

Yuewen Sun^{1,2*}, Lingjing Kong^{2*}, Guangyi Chen^{1,2}, Loka Li¹, Gongxu Luo¹, Zijian Li¹, Yixuan Zhang¹, Yujia Zheng², Mengyue Yang³, Petar Stojanov⁴, Eran Segal¹, Eric P. Xing^{1,2}, Kun Zhang^{1,2}

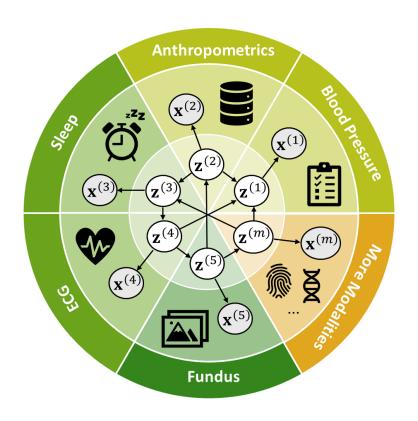
¹Mohamed bin Zayed University of Artificial Intelligence, ²Carnegie Mellon University,

³University of Bristol, ⁴Broad Institute of MIT and Harvard

* Equal contribution

Background

Biomedical dataset involves unique and related modalities



Tabular data: demographic, blood pressure, ··· fundus image, bone density, ···

Sequential data: sleep monitoring, ECG, ...

Discovery of novel molecular markers

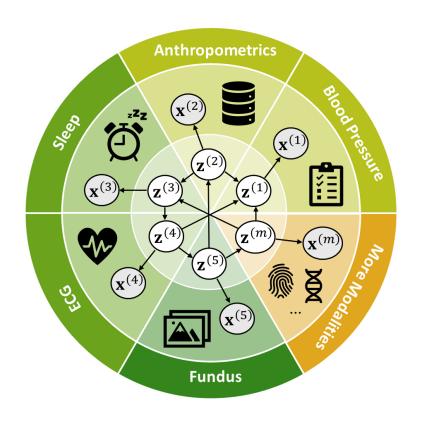
(Gen, protein, RNA) → Lung cancer

Development of predictive models for disease

• (Health records, medical images, wearable data) → Type 2 diabetes

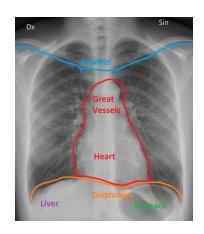
Background

- Biomedical dataset involves unique and related modalities
- Biomedical interactions may be governed by some causally-related unobserved latent variables



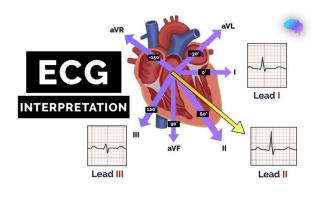
Heart health

Heart size



X-ray Image

Heart rate variability



ECG

MBZUAI

Recent Advance

- Large-scale model
 - Exploit biomedical datasets for various tasks
 - Lack interpretability could be a big issue
- Causal representation learning
 - · Identify latent causal structures directly from raw data
 - Prior work:
 - Identify latent subspaces shared by multiple modalities
 - Rely on specific assumptions about the latent variables

Motivation

- Large-scale model
 - Exploit biomedical datasets for various tasks
 - Lack interpretability could be a big issue
- Causal representation learning
 - Identify latent causal structures directly from raw data
 - Prior work:
 - Identify latent subspaces shared by multiple modalities
 - Rely on specific assumptions about the latent variables

- Theoretically, we provide identifiability guarantees for each latent component
- **Empirically**, we develop a theoretically grounded estimation framework to recover the latent components in each modality

Problem Formulation

- A set of observations/measuremnets from M modalities: $\mathbf{x} \coloneqq [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)}]$
- A set of causally related latent variables underlying M modalities: $\mathbf{z} \coloneqq [\mathbf{z}^{(1)}, ..., \mathbf{z}^{(M)}]$
- Latent causal relations: $z_i^{(m)} \coloneqq g_{z_i^{(m)}} \left(\operatorname{Pa} \left(z_i^{(m)} \right), \epsilon_i^{(m)} \right)$
- Data generating functions: $\mathbf{x}^{(m)} \coloneqq g_{\mathbf{x}^{(m)}}(\mathbf{z}^{(m)}, \boldsymbol{\eta}^{(m)})$

Level 1 -- Subspace Identifiability

• The estimated latent subspace $\hat{\mathbf{z}}^{(m)}$ for any modality m and its true counterpart $\mathbf{z}^{(m)}$ are equivalent up to an invertible map $h^{(m)}$: i.e., $\hat{\mathbf{z}}^{(m)} = h^{(m)}(\mathbf{z}^{(m)})$

A1: Smoothness & Invertibility

Theorem 4.2 (Subspace Identifiability). Let $\theta := \{g_{\mathbf{x}^{(m)}}, \tilde{g}_{\mathbf{z}^{(-m)}}, p(\tilde{\boldsymbol{\epsilon}}^{(m)}), p(\tilde{\boldsymbol{\epsilon}}^{(-m)})\}_{m=1}^{M}$ and $\hat{\theta} := \{\hat{g}_{\mathbf{x}^{(m)}}, \hat{g}_{\mathbf{z}^{(-m)}}, p(\hat{\boldsymbol{\epsilon}}^{(m)}), p(\hat{\boldsymbol{\epsilon}}^{(-m)})\}_{m=1}^{M}$ be two specifications of the data-generating process in Eq. (3). Suppose that they generate identical observational distributions (i.e., $p(\mathbf{x}) = \hat{p}(\mathbf{x})$), θ satisfies Condition 4.1, and $\hat{\theta}$ satisfies Condition 4.1-A1. The latent subspace $\hat{\mathbf{z}}^{(m)}$ for any group m and its counterpart $\mathbf{z}^{(m)}$ are equivalent up to an invertible map $h^{(m)}(\cdot)$, i.e., $\hat{\mathbf{z}}^{(m)} = h^{(m)}(\mathbf{z}^{(m)})$.

A1: Smoothness & Invertibility + A2: Linear Independence

• Information of the subspace $\mathbf{z}^{(m)}$ is preserved in its corresponding observation $\mathbf{x}^{(m)}$ and exerts sufficient influence on other modalities' observations $\mathbf{x}^{(-m)}$

Level 2 -- Component-wise Identifiability

• Further disentangle each subspace into individual components

A1: Smoothness & Invertibility + A2: Linear Independence

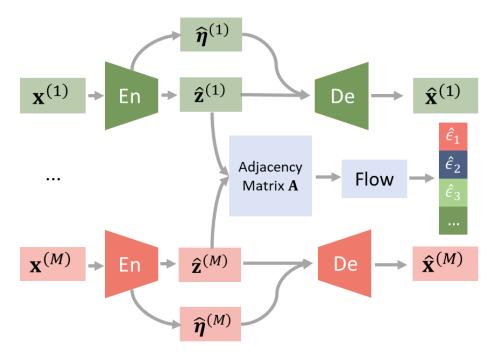
A3: Component Identifiability Conditions

Theorem 4.4 (Component-wise Identifiability). Let $\theta := (\{g_{\mathbf{x}^{(m)}}, g_{\mathbf{z}^{(m)}}, p(\boldsymbol{\epsilon}^{(m)})\}_{m=1}^{M})$ and $\hat{\theta} := (\{\hat{g}_{\mathbf{x}^{(m)}}, \hat{g}_{\mathbf{z}^{(m)}}, \hat{g}_{\mathbf{z}^{(m)}}, \hat{p}(\boldsymbol{\epsilon}^{(m)})\}_{m=1}^{M})$ be two specifications of the data-generating process in Eq. (1) and Eq. (2). Suppose that they generate identical observational distributions (i.e., $p(\mathbf{x}) = \hat{p}(\mathbf{x})$) and θ satisfies Condition 4.1 and Condition 4.3. If $\hat{\theta}$ satisfies the following sparse regularization condition:

$$\sum_{m \neq n \in [M]} \left\| [\hat{\mathbf{G}}]_{(m),(n)} \right\|_{0} \le \sum_{m \neq n \in [M]} \left\| [\mathbf{G}]_{(m),(n)} \right\|_{0}, \tag{5}$$

each component $z_i^{(m)}$ and its counterpart $\hat{z}_{\pi(i)}^{(m)}$ are equivalent up to an invertible map $h(\cdot)$, i.e., $\hat{z}_{\pi(i)}^{(m)} = h(z_i^{(m)})$ under a permutation π over $[d(\mathbf{z}^{(m)})]$.

Estimation Framework

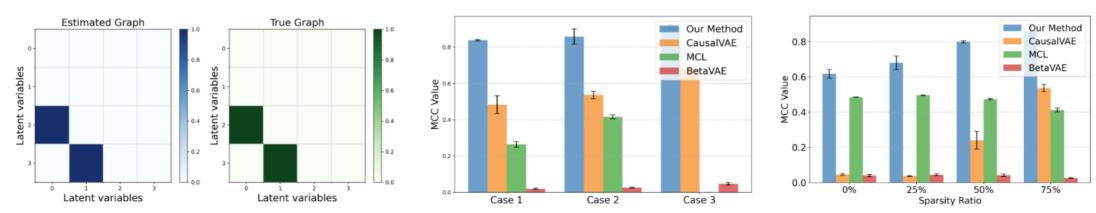


- Encoder-decoder framework
- Corresponding encoder-decoder for each modality
- Learnable adjacency matrix to enforce sparse causal relations
- Combination objective

$$\mathcal{L} = \alpha_{\text{Recon}} \mathcal{L}_{\text{Recon}} + \alpha_{\text{Ind}} \mathcal{L}_{\text{Ind}} + \alpha_{\text{Sp}} \mathcal{L}_{\text{Sp}}.$$

Experiments: Synthetic Dataset

- **Settings**: 15~30 dims observations, with causally-related latent variables in each modality
- Conclusion:
 - High MCC show that our method successfully recovers latent variables across all cases
 - Inter-modal causal relations are accurately identified
 - The identifiability improves when the sparsity increases



(a) Causal comparison between esti- (b) Comparison of the identifiabil- (c) Identifiability result under mated and true graphs (SHD=0).

ity result in different cases.

different sparsity ratios.

Experiments: Variant MNIST

- We manually created a variant of the MNIST dataset to encode causal relationships between modalities
- Two different modalities: colored MNIST + fashion MNIST

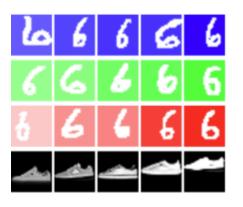




Table 2: The results of MNIST dataset.

	MCL	BetaVAE	CausalVAE	Ours
R2	$0.79 \pm 6e-5$	$0.68 \pm 2e-3$	$0.50 \pm 4e$ -3	0.90 ± 9e-5
MCC	$0.63 \pm 2e-6$	$0.53 \pm 1e$ -3	$\begin{array}{c} 0.50 \pm \text{4e-3} \\ 0.74 \pm \text{2e-3} \end{array}$	$\textbf{0.85}\pm3\text{e-5}$

Experiments: Human Phenotype

