

Privately Counting Partially Ordered Data

Matthew Joseph, Mónica Ribero, Alex Yu {mtjoseph, mribero, alexjyu}@google.com

Background

Partially Ordered Data

- A poset (P, ≤) is a finite set P together with a reflexive, transitive, and anti-symmetric relation ≤.
- Example: Consider the survey:
 - \circ x_1 : Have you been told you have hypertension?
 - x₂: Have you been told multiple times?
 - \circ x_3 : Have you had high cholesterol?

The survey structure imposes partial order $x_2 \le x_1$, x_3 .

 Other examples of partially ordered data include software library dependencies, coursework prerequisites, and any data encoded using directed acyclic graphs.

Differential Privacy and the K-norm mechanism

Definition: Given a dataset $D=\{d_1,\ldots,d_n\}\in\mathcal{D}$, a randomized mechanism satisfies ϵ -differential privacy (DP) if for any pair of databases (D, D') differing in one record, and any set of outputs

$$\mathbb{P}(\mathcal{M}(D) \in S) \leq e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S)$$

Lemma 1 [2]: Given norm $|||\cdot||$, statistic T with $||\cdot||$ -sensitivity Δ , database X, the K-norm mechanism satisfies ϵ -DP and has output density

$$f_X(y) \propto \exp\left(-\frac{\varepsilon}{\Delta} \cdot \|y - T(X)\|\right)$$

Lemma 2 [2]: Running the K-norm mechanism reduces to sampling the unit ball for the norm $\|\cdot\|$.

Related Work

- Projection [15, 13], matrix [10, 11], and factorization [4, 14] offer general but potentially slow approximations for optimal, problem-specific private additive noise. We provide a problem-specific, optimal, and fast alternative.
- Joseph and Yu [3] efficiently implemented the K-norm mechanism for improved noise distributions in sum, count, and vote problems with contribution bounds.
- Our work differs from Joseph and Yu [7] by addressing different problems needing different sampling techniques due to their unique underlying combinatorial structures and the resulting challenges in sampling their respective norm balls.

Contributions and Methods

For partially ordered data, tailoring an instance of the K-norm mechanism produces a more accurate algorithm that's still fast enough to be practical.

Step 1: relate the poset ball to a known combinatorial object.

Lemma 3.4. The poset ball for poset (P^*, \preceq) is $\mathcal{O}_2(P^*-r)$, the double order polytope on the double order poset $(P^*-r, \preceq, \preceq)$.

Step 2: Efficiently sample the "known" object:

Idea:

- 1. Find *unimodular triangulation* of the polytope.
 - Disjoint subdivision of the polytope into minimal volume simplices.
 - Extended bipartitions are partitions of the nodes in two sets where each part can be extended to a total order that is compatible with the underlying partial order.
 - Extended bipartitions index a triangulation of the polytope.
- 2. Sample one simplex in the triangulation.
 - Extended bipartitions can be efficiently sampled.
 - The indexing structure can be efficiently translated into vertices of the corresponding simplex.
- 3. Sample uniformly at random from the corresponding simplex.

Theorem 3.15. The poset ball for (P^*, \preceq) can be sampled in time $O(d^2)$.

Why not rejection sampling?

Theorem 3.17. Rejection sampling the poset ball using any ℓ_p ball is inefficient.

Results

Error introduced by different norms

Lemma 3.16. Proves the is the B^d_∞ is the minimum ℓ_p ball containing the poset ball. Below we empirically evaluate the expected ℓ_2 -norm of a vector sampled from different ℓ_p balls.

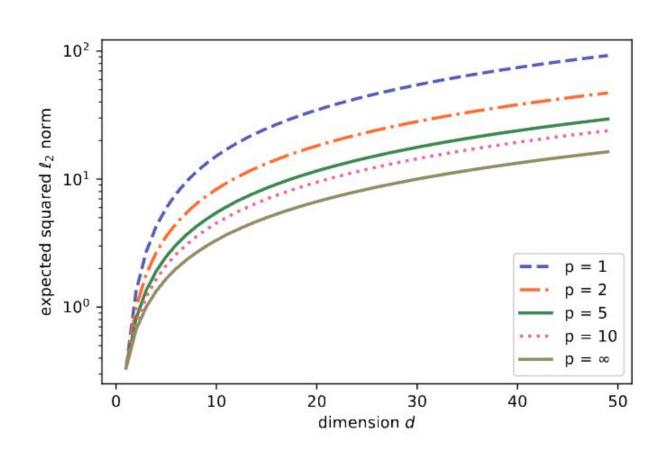
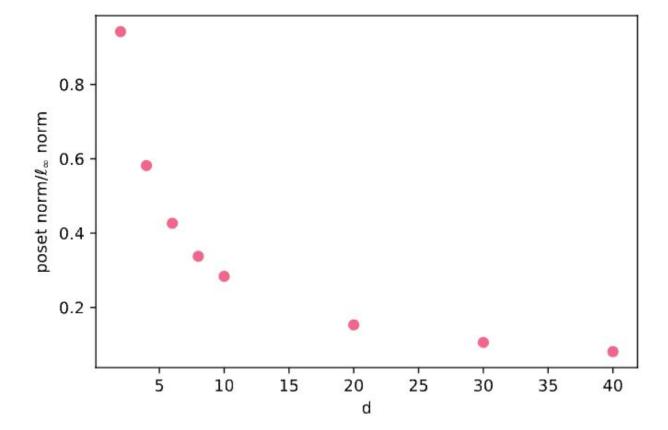


Figure 1: $r_{p,d}^2 \mathbb{E}_2^2(B_p^d)$ (see Lemma 4.1).

Poset mechanism vs ℓ_{∞} mechanism

We uniformly sample a directed acyclic graph on a fixed number d of uniquely labeled vertices. our algorithm's advantage in terms of expected squared {2 norm widens with d.



Error reduction on a real survey

# survey sections	poset ball squared ℓ_2 norm / l_∞ ball squared ℓ_2 norm
1	0.414
2	0.427
3	0.408

Figure 4: NHIS average mean squared ℓ_2 norm ratios, from 10,000 trials each

References

- [1] Center for Medicare Services and Medicaid. National health interview survey. https://www.cms.gov/
- [2] Hardt, Moritz, and Kunal Talwar. "On the geometry of differential privacy. STOC 2010.