SONY

Mining your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

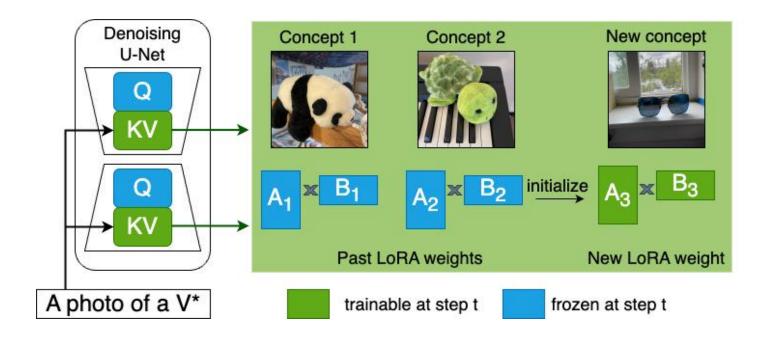
Saurav Jha*, Shiqi Yang, Masato Ishii, Mengjie Zhao, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi, Yuki Mitsufuji

* Work done as an intern at Sony Japan.

https://srvcodes.github.io/continual_personalization/

Continual Personalization with LoRA

- We acquire one new concept at a time step 't'
- We finetune LoRA for K,V layers in the U-Net cross-attention
- Sequential initialization of LoRA layers



Motivation: Class-incremental learning

- Regularization-based methods widely use class-specific information
- E.g. EWC using cross-entropy loss for Fisher Information estimation

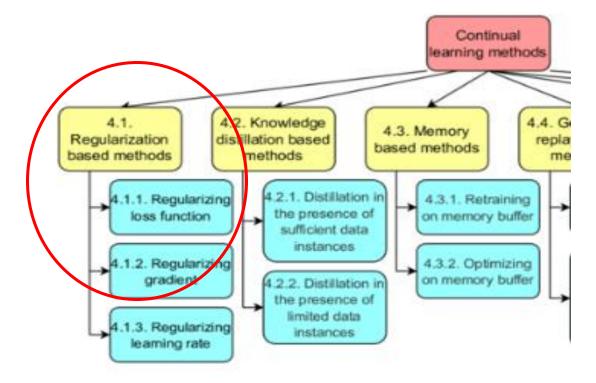


Image source: Qu et al. "Recent Advances of Continual Learning in Computer Vision: An Overview"

Class-specific information in diffusion models

• **Diffusion Classifier (DC) scores:** the softmax over the negative denoising scores w.r.t. each concept [1]

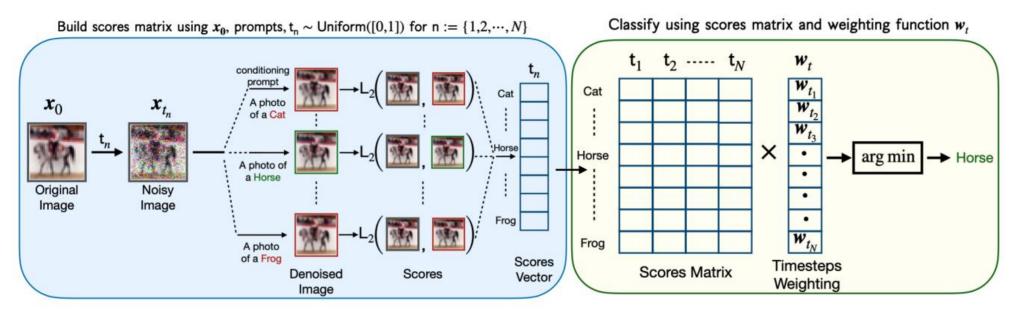


Image source: [1]

Roadmap

Parameterspace regularization framework

Parameterspace reg. with DC scores

Functional-space regularization framework

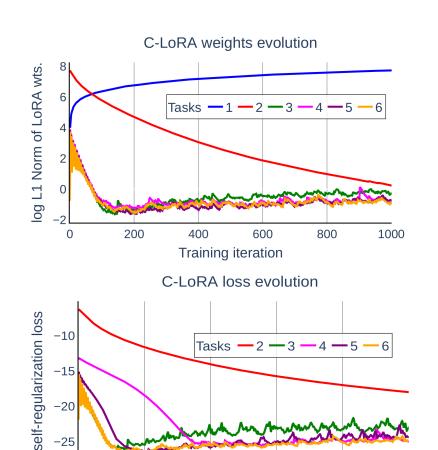
Functional-space reg. with DC scores

C-LoRA: SOTA parameter-space regularization

 Penalize the modification of LoRA spots allocated to any previous task

$$L_{\text{forget}} = \| \| \sum_{n'=1}^{n-1} A_{n'} B_{n'} \| \odot A_{n} B_{n} \|^{2}$$

Leads to a degenerate solution



400

600

Training iteration

800

200

1000

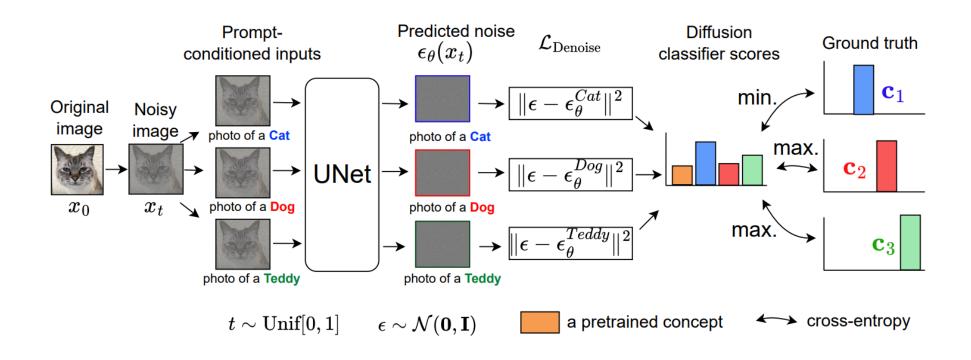
Elastic Weight Consolidation: a classic

- Parameters important to a previous task will have larger corresponding Hessian (wrt log likelihood of current task samples)
- θ^b is the model learned from previous tasks
- b_i is the diagonal Fisher information:

$$L'(\theta) = L(\theta) + \lambda \sum_{i} b_{i} (\theta_{i} - \theta_{i}^{b})^{2}$$

DC scores for Fisher information estimation

- We compute the DC scores as usual
- Loss L for FIM estimation involves:
 - *L_Denoise* + cross-entropy(DC scores, one-hot ground truth)



1. Large number of inference trials

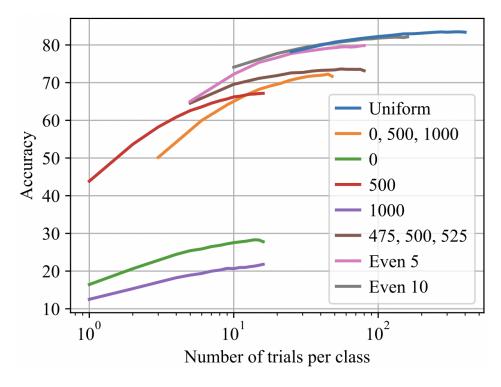


Image source: Li et al. "Your diffusion model is secretly a zero-shot classifier", ICCV 2023.

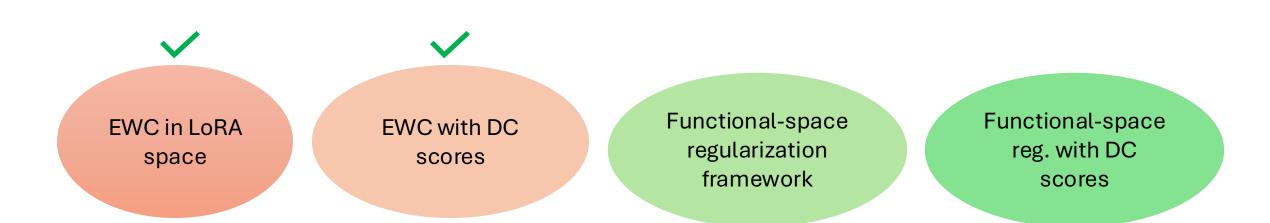
1. Large number of inference trials

- We estimate the FIM as an average over multiple epochs
- We maintain single trial per class per minibatch
- Results in diverse range of timesteps over multiple epochs

- 1. Large number of inference trials
- 2. Large number of seen concepts

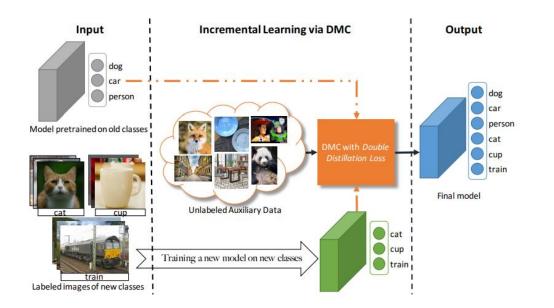
- 1. Large number of inference trials
- 2. Large number of seen concepts
 - Iterative pruning still requires multiple passes per class
 - Instead, we maintain a subset c_k of seen concepts
 - c_k always contains c_0 (pretrained), c_n (most recent)
 - Additionally, c_k might contain |k-2| randomly sampled previous concepts

Roadmap progress



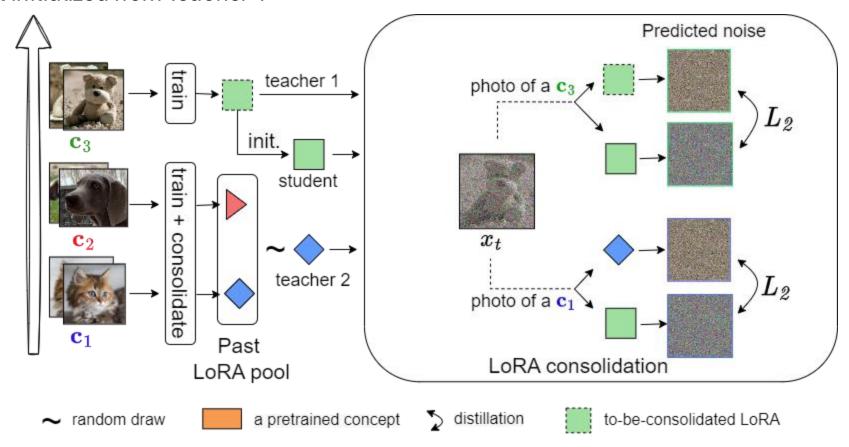
Deep Model Consolidation: another classic

- Double distillation loss for function-space consolidation
- Student model initialized randomly
- Teacher-1 model initialized from task n
- Teacher-2 model initialized from task n-1
- No need for memory replay while training student model



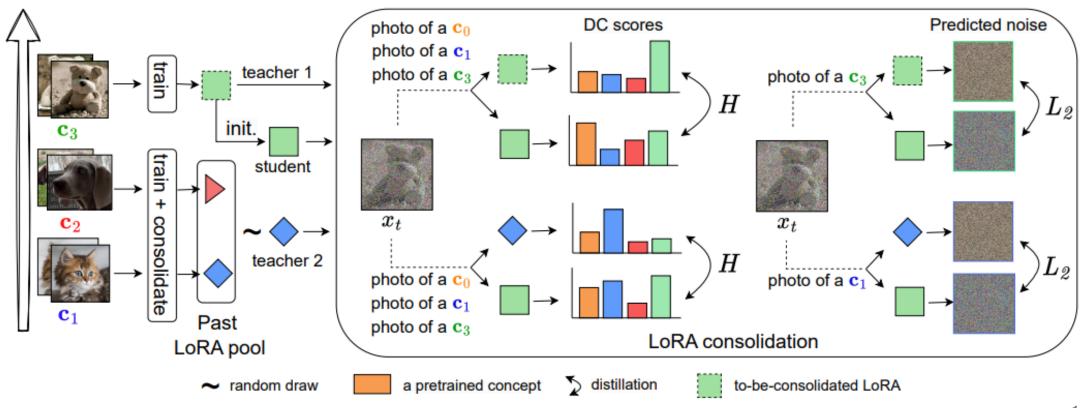
DMC for LoRA needs changes

- Teacher-1 = LoRA for task n
- Teacher-2 = LoRA chosen at random from tasks {1, ..., n-1}
- Student initialized from Teacher-1



Diffusion Scores Consolidation (DSC)

- Training objective:
 - Minimize cross-entropy between teacher-student DC scores
 - Minimize L2 distance between teacher-student noise predictions

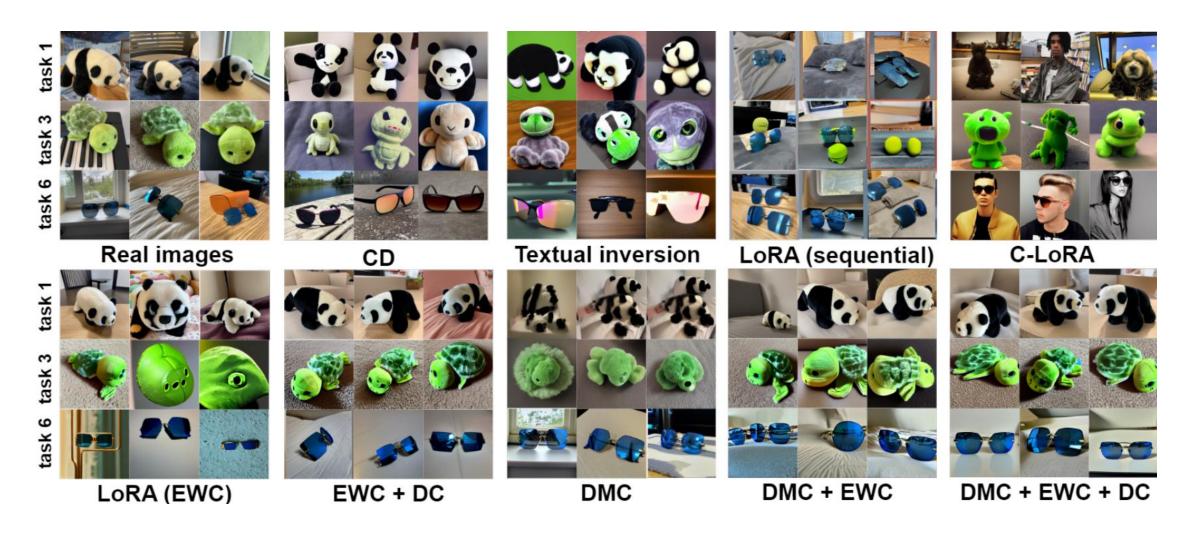


Evaluation metrics

- Using CLIP-based features for real and generated images
- The lower the better:
 - Average Maximum Mean Discrepancy (A_MMD)
 - Forgotten Maximum Mean Discrepancy (F_MMD)
 - Kernel Inception Distance (KID)
- The higher the better:
 - Image to Image similarity (I2I)
 - Text to Image similarity (T2I)
 - Backward transfer of MMD scores (BwT_MMD): Proposed to address the relative natures of F_MMD.

$$BWT_MMD = \frac{1}{(N-1)} \sum_{j=1}^{N-1} (MMD(F_{CLIP}(XD_{,j}), F_{CLIP}(Xj_{,j})) - MMD(F_{CLIP}(X_{D,j}), FC_{LIP}(XN_{,j})))$$

Qualitative results: CustomConcept dataset

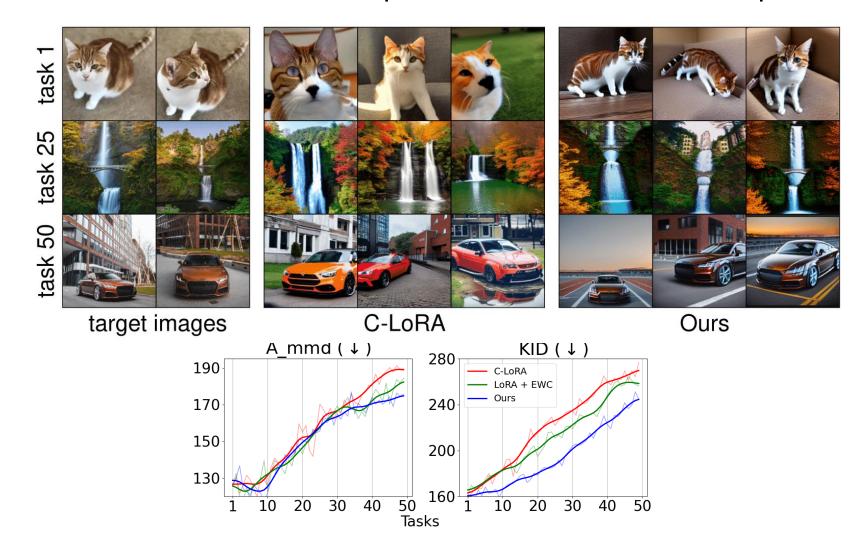


Quantitative results: CustomConcept dataset

	†	†	↓	↓	↓	<u> </u>
After 6 tasks (avg. over 3 seeds)	CLIP I2I (x100)	CLIP T2I (x100)	KID (x 10^3)	A_MMD (x 10^3)	Forgetting MMD	BwT MMD
Textual Inversion	60.74	22.86	205.69	185.74	0	0
Custom Diffusion (CD)	69.53	22.55	179.4	121.89	0.62	-273.41
CD + EWC	69.44	22.58	177.99	121.02	0.506	-245.7
CD with LoRA	61.30	22.97	203.11	176.38	0.052	-118.56
C-LoRA	64.89	23.07	173.8	117.2	0.034	-107.47
LoRA + EWC	73.19	22.15	156.91	105.07	0.008	-99.34
LoRA + EWC + DC	73.41	22.97	154.25	102.81	0.00052	-102.53
LoRA + DMC	73.36	22.57	187.2	198.45	0.049	-105.79
LoRA + DMC + EWC	72.92	22.89	143.92	98.0	0.02	-94.63
LoRA + DMC + EWC + DC	73.17	22.84	140.18	94.1	0.003	-92.44

Longer sequence: 50 tasks setup

Randomly chosen subset of 50 concepts from the CustomConcept101 dataset

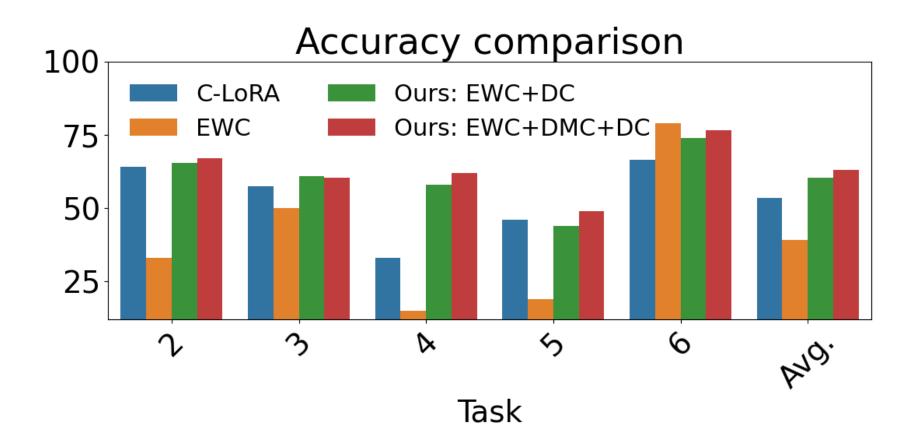


Multi-concept generation setup

Prompt: "A photo of V1 plushie tortoise. Posing in front of V2 waterfall"

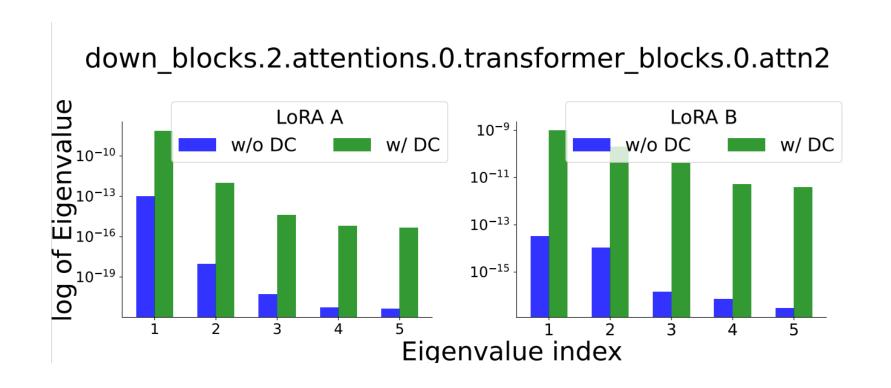
Sanity check-1 for DC scores

• Evaluating classification accuracy on the training dataset



Sanity check-2 for DC scores

- Evaluating the information encoded in the Fisher Information Matrix
- Choose 3 random layers, and check the top-k Eigen values for FIM



Conclusion

- We study using DC scores for continual personalization of text-toimage diffusion model
- We propose two regularization frameworks for DC scores:
 - Parameter-space reg. with Elastic Weight Consolidation
 - Function-space reg. with Deep Model Consolidation
- Both proposed methods have zero inference-time parameter overhead over state-of-the-art C-LoRA