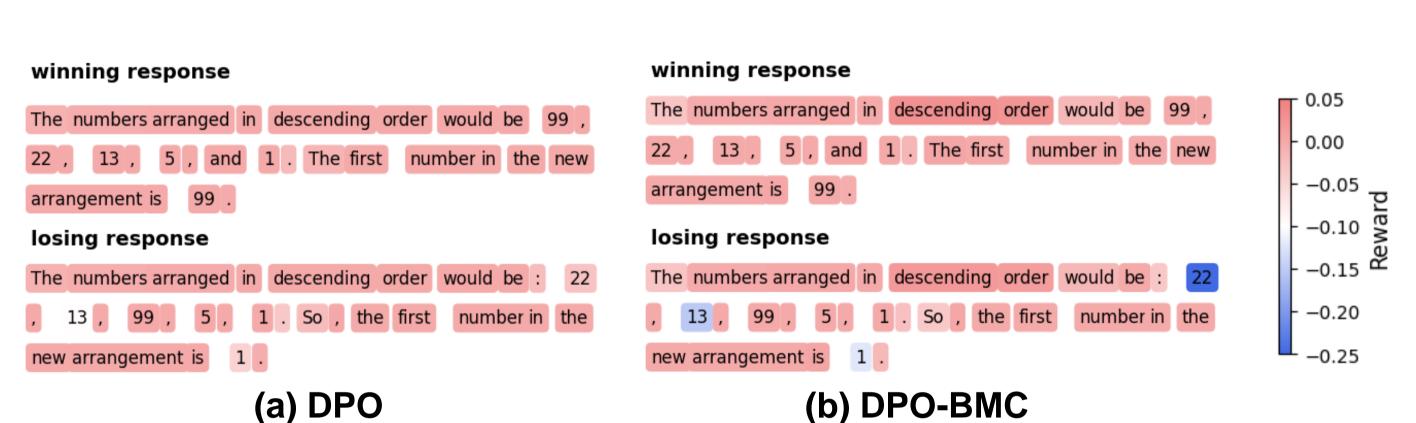
Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization

Yuxin Jiang^{1,2}, Bo Huang^{1,2}, Yufei Wang³, Xingshan Zeng³, Liangyou Li³, Yasheng Wang³, Xin Jiang³, Lifeng Shang³, Ruiming Tang³, Wei Wang^{1,2}

Code Paper

1. HKUST(GZ)


3. Huawei Noah's Ark Lab 2. HKUST

Introduction

In DPO, the generation of y_w and y_l are typically produced without mutual visibility, resulting in a lack of strong correlation or relevance between them.

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

• Thus, the model may struggle to identify nuanced yet significant distinctions that differentiate superior responses from inferior ones, leading to suboptimal alignment performance.

Bridging Phase eeling pride about a new mile time suggests he worked on getting better and (C) improve yourself (D) pass class new mile time. He fel improved himself. pride when he looked at his new mile time as he improved himself. y_w as a reference The answer is C **Modeling Phase**

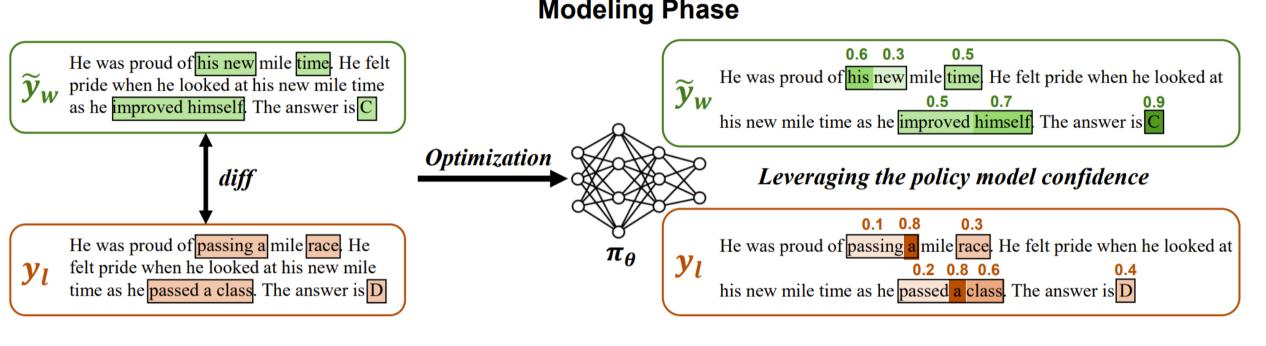


Figure 1: Overview of our proposed BMC framework. (1) In the Bridging Phase, we utilize an offthe-shelf LLM to make targeted modifications of losing response y_l on undesired tokens, with the winning response y_w serving as a reference. Therefore, the synthesized pseudo-winning response \tilde{y}_w is highly correlated with y_l . (2) In the Modeling Phase, we model the correlations between \tilde{y}_w and y_l by dynamically emphasizing the rewards of their varied tokens ($diff(\tilde{y}_w \mid y_l)$ and $diff(y_l \mid \tilde{y}_w)$), leveraging the policy model confidence (numbers indicated above tokens) during training.

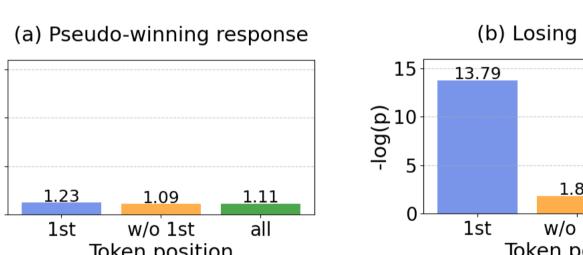
Methodology

- Bridging Phase: $LLM(I, x, y_w, y_l) \rightarrow \tilde{y}_w$, where I is the instruction of targeted modification.
- Modeling Phase:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(\tau_w, \tau_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \sum_{t=0}^{N-1} \log \frac{\pi_{\theta}(a_w^t \mid s_w^t)}{\pi_{\text{ref}}(a_w^t \mid s_w^t)} - \beta \sum_{t=0}^{M-1} \log \frac{\pi_{\theta}(a_l^t \mid s_l^t)}{\pi_{\text{ref}}(a_l^t \mid s_l^t)} \right) \right] \text{(token-level MDP format)}$$

Grad Norm

leveraging the policy model confidence


$$\mathcal{L}_{\text{DPO-BMC}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, \tilde{y}_w, y_l) \sim \tilde{\mathcal{D}}} \left[\log \sigma \left(\beta \sum_{\tilde{y}_w^t \in \tilde{y}_w} \lambda_{\tilde{y}_w^t} \log \frac{\pi_{\theta}(\tilde{y}_w^t \mid \tilde{y}_w^{< t}, x)}{\pi_{\text{ref}}(\tilde{y}_w^t \mid \tilde{y}_w^{< t}, x)} - \beta \sum_{y_l^t \in y_l} \lambda_{y_l^t} \log \frac{\pi_{\theta}(y_l^t \mid y_l^{< t}, x)}{\pi_{\text{ref}}(y_l^t \mid y_l^{< t}, x)} \right) \right],$$

$$\lambda_{ ilde{y}_w^t} = \left\{ egin{array}{ll} 1 + \min\left(sg\left(rac{1}{\pi_{ heta}(ilde{y}_w^t | ilde{y}_w^{< t}, x)}
ight), \delta
ight), & ext{if } ilde{y}_w^t \in diff(ilde{y}_w \mid y_l) \\ 1, & ext{otherwise} \end{array}
ight. \ \lambda_{y_l^t} = \left\{ egin{array}{ll} 1 + \min\left(sg\left(rac{1}{\pi_{ heta}(y_l^t | y_l^{< t}, x)}
ight), \delta
ight), & ext{if } y_l^t \in diff(y_l \mid ilde{y}_w) \\ 1 & ext{otherwise} \end{array}
ight.
ight.$$

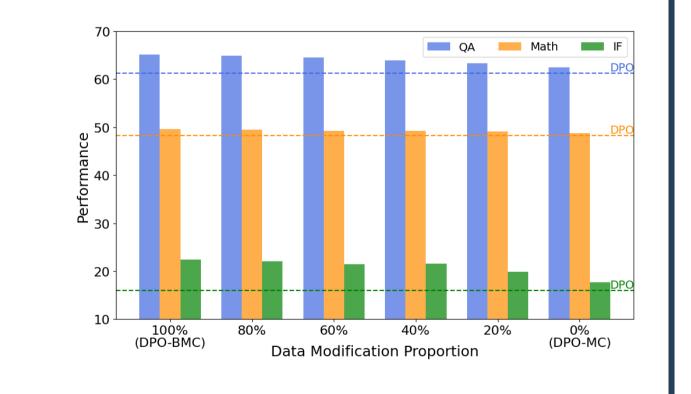
Edit Distance

0.83

(c) DPO-BC

		/	_				
9	(b) Losing response						
	15	13.79					
	(d) 10 						
	<u>60</u> 5						
	0		1.81	1.85			
_	0-	1st To	w/o 1st oken positio	all			

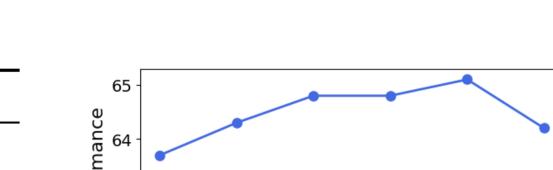
Experiments


Method	Question-Answering Tasks					Mathematical Reasoning Tasks				
1,1001100	ECQA	QASC	OBQA	StrategyQA	Avg.	GSM8k	MATH	MAWPS	TabMWP	Avg.
SFT	72.8	54.5	51.8	56.9	59.0	55.8	11.6	80.3	42.8	47.6
FIGA	70.3	52.5	51.7	48.6	55.8	54.1	9.8	75.5	39.0	44.6
IPO	71.5	58.9	53.6	58.4	60.6	57.2	12.1	82.2	42.5	48.5
OPRO	69.8	55.1	51.4	57.2	58.4	56.0	12.4	80.8	41.3	47.6
R-DPO	73.5	59.5	55.4	58.8	61.8	56.9	12.0	81.9	42.2	48.2
SimPO	71.9	56.7	52.2	55.4	59.1	57.5	12.7	81.8	43.5	48.9
DPO	73.1	58.8	55.6	57.8	61.3	56.3	12.3	81.2	43.4	48.3
DPO (CW)	72.5	58.6	55.2	57.3	60.9	55.9	11.8	80.7	42.8	47.8
DPO (EW)	72.9	59.4	55.8	57.9	61.5	56.5	12.0	80.9	43.4	48.2
DPO-BMC	75.9	63.0	60.4	61.0	65.1	58.4	13.0	83.1	43.8	49.6
DPO-BC	<u>75.7</u>	<u>62.0</u>	56.0	<u>60.1</u>	<u>63.4</u>	<u>57.6</u>	<u>12.7</u>	<u>82.8</u>	43.4	<u>49.1</u>
DPO-MC	74.8	60.0	<u>56.4</u>	58.8	62.5	57.2	12.5	82.4	43.0	48.8

	Llama3-8B-Base					Mistral-7B-Base				
Method	AlpacaEval 2			Arena-Hard		AlpacaEval 2			Arena-Hard	
	LC (%)	WR (%)	Avg. len	WR (%)	Avg. len	LC (%)	WR (%)	Avg. len	WR (%)	Avg. ler
SFT	7.5	4.7	956	2.6	414	8.1	5.9	998	2.2	454
FIGA	8.4	4.2	1,199	5.1	416	7.0	4.9	1,378	2.5	461
IPO	13.4	9.8	1,430	14.0	477	12.5	10.8	1,588	8.5	522
ORPO	12.5	11.4	1,793	11.7	573	14.5	11.5	1,630	9.4	566
R-DPO	17.1	14.4	1,801	17.6	582	16.0	12.3	1,521	10.4	529
SimPO	21.3	18.9	1,718	26.6	562	16.8	14.4	1,906	18.4	615
DPO	$\overline{16.0}$	14.8	1,713	17.6	559	15.1	13.3	1,657	13.6	540
DPO (CW)	15.2	14.0	1,756	17.1	570	14.5	12.9	1,647	13.0	532
DPO (EW)	17.2	15.6	1,702	18.2	566	15.3	13.4	1,668	13.9	549
DPO-BMC	22.4	16.8	1,285	18.1	406	20.8	16.6	1,317	17.6	488
DPO-BC	20.6	$\overline{14.4}$	1,269	$\overline{16.8}$	422	18.6	13.8	1,489	15.9	502
DPO-MC	17.7	15.2	1,890	17.9	579	16.4	14.3	1,712	15.4	551

Ablation Study

Data synthesis methods


Data Synthesis	Training Data	QA	Math	IF
$y_l \xrightarrow{y_w} \tilde{y}_w$ (ours)	(\tilde{y}_w,y_l)	65.1	49.6	22.4
$y_l \longrightarrow \tilde{y}_w$	(\tilde{y}_w,y_l)	64.3	49.2	19.8
$y_w \xrightarrow{y_l} ilde{y}_l$	(y_w, \tilde{y}_l)	64.6	48.7	18.9
$y_w \longrightarrow ilde{y}_l$	(y_w, \tilde{y}_l)	63.9	48.6	17.6

Data modification proportion

Data synthesis LLMs

Method LLM for Targeted Modification QA Math IF 56.9 47.6 7.5 **SFT** 61.3 48.3 DPO Llama3-70B-Instruct DPO-BMC 64.6 49.4 21.8 49.6 22.4 gpt-4-0125-preview DPO-BMC

 δ in the Modeling Phase

- DPO-MC ≥ 0.3 DPO-BC Training step

Why BMC Works?

LC (%)	Grad Norm	(y_w, y_l)	Edit Distance	LC (%)	Grad Norm
7.68	3.31	split 1	0.57	9.40	5.70
9.49	4.85	split 2	0.70	12.49	8.39
10.50	4.86	split 3	0.73	13.27	8.66
10.01	5.33	split 4	0.76	11.47	9.03
8.57	6.31	split 5	0.83	9.81	8.44
7.91	13.00	split 6	0.95	9.90	9.04
DPO			(b) DP	O-MC	

(B) DPO-IVIC								
$(\widetilde{\boldsymbol{y}}_{w}, \boldsymbol{y}_{l})$	Edit Distance	LC (%)	Grad Norm					
split 1	0.45	11.21	5.26					
split 2	0.52	11.49	7.33					
split 3	0.56	11.47	7.70					
split 4	0.61	14.38	8.17					
split 5	0.70	15.28	7.65					
split 6	0.84	12.29	8.75					

(d) DPO-BMC

- Bridging Phase fosters tailored learning toward critical differences in preference data.
- Modeling Phase promotes a balanced optimization landscape by encouraging challenging distinctions while reinforcing learned patterns.