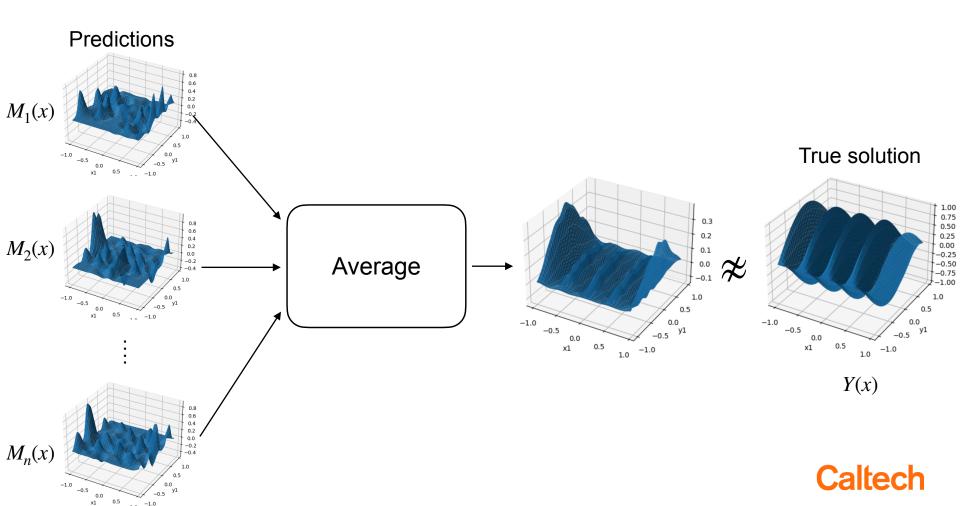
Model Aggregation: Data-driven combination of any prediction

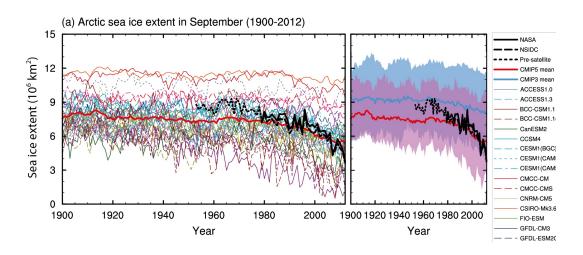
Theo Bourdais

PhD Student, Computing + Mathematical Sciences

November 8th 2024



Real-life example from the IPCC



Arctic sea ice extent estimated by many models,

Coupled Model Intercomparison Project (report AR5 - figure 9.24)

Existing aggregation methods

Trainable models

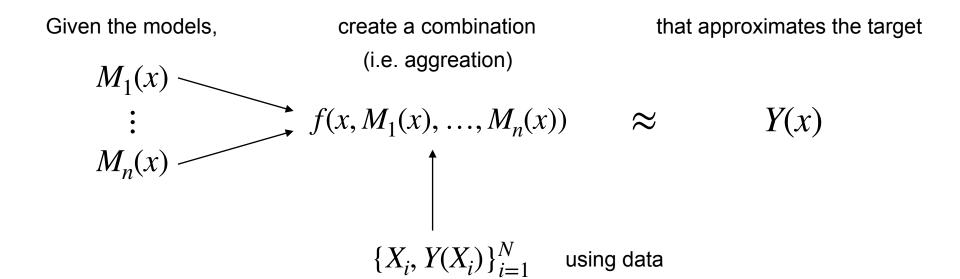
- Average (Random forests, bagging)
- Trainable fixed combination (Gradient boosting)
- Trainable input dependant combination (Mixture-of-experts)

Fixed models

- Average
- Pick the best model

There is a gap in refinement

The aggregation problem



Best Mean Squared Error Aggregation

The best possible aggregation in Mean Squared Error is

$$M_A^*(x) := \underset{f \text{ measurable}}{\operatorname{argmin}} \mathbb{E}[|Y(x) - f(x, M_1(x), \dots, M_n(x))|^2] = \mathbb{E}[Y(x)|M_1(x), \dots, M_n(x)]$$

This is intractable in general

Special Case: $(Y(x), M_1(x), \dots, M_n(x))$ is Gaussian

$$M_A^*(x) = \sum_{i=1}^n \alpha_i^*(x) M_i(x)$$

$$\alpha^*(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \mathbb{E} \left[\left| Y(x) - \sum_{i=1}^n a_i M_i(x) \right|^2 \right] = \mathbb{E} \left[M(x) M(x)^T \right]^{-1} \mathbb{E} \left[M(x) Y(x) \right]$$
Caltech

Best case aggregation: Gaussian models

To solve the Laplace equation:

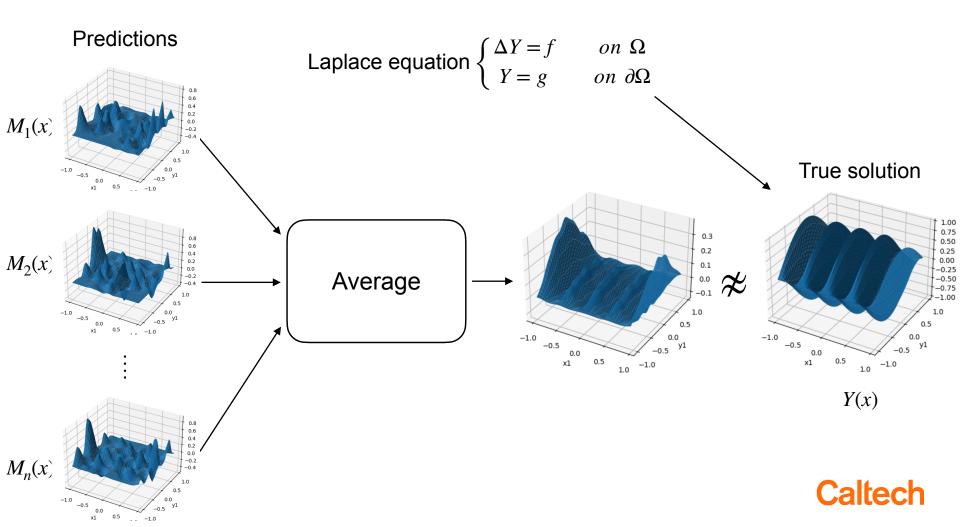
$$\begin{cases} \Delta Y = f & on \ \Omega \\ Y = g & on \ \partial \Omega \end{cases}$$

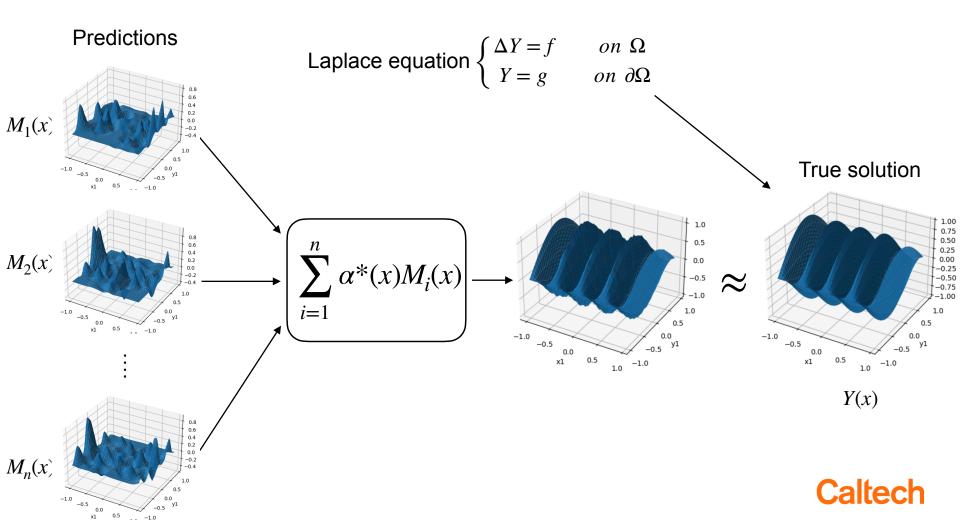
We can use a Gaussian process with:

- A kernel k
- A set of collocation points $X \subset \Omega$

To get a Gaussian approximation of the solution [Chen et al., 2021]

$$\xi \sim \mathcal{N}(0,k), \hat{Y} = \mathbb{E}[\xi \mid \Delta \xi(X) = f(X)]$$





Minimal Error Aggregation

 α^* is defined as:

$$\alpha^*(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \mathbb{E} \left[\left| Y(x) - \sum_{i=1}^n a_i M_i(x) \right|^2 \right]$$

And we only have access to data $\{X_i, Y(X_i)\}_{i=1}^N$. So we need to learn over the training set and extrapolate for all x

$$\hat{\alpha}_E = \underset{a}{\operatorname{argmin}} \sum_{k=1}^{N} \left[\left| Y(X_k) - \sum_{i=1}^{n} a_i(X_k) M_i(X_k) \right|^2 \right]$$

This does not work!

α is your favorite Machine Learning method (neural network, linear regression..)

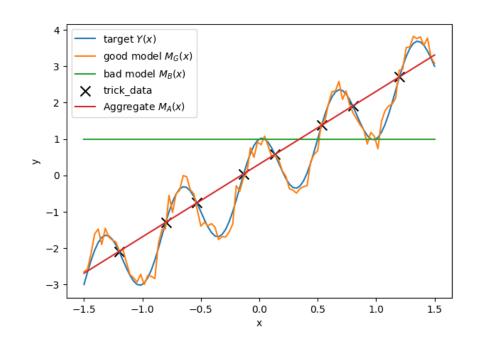
A pathological example

Given the target, models and data:

- Take α linear $\alpha(x) = (a_G x + b_G, a_B x + b_B)$
- Train using empirical MSE

Notice that:

- For each data point, the good model performs better than the bad model
- The best aggregation ignores the bad model



- The aggregate ignores the good model and interpolates the data
- Aggregation uses models as features, not approximations of Y

Minimal Variance Aggregation

Let:

$$\begin{cases} M_1(x) = Y(x) + \epsilon_1(x) \\ \vdots \\ M_n(x) = Y(x) + \epsilon_n(x) \end{cases}$$

Where

- ϵ_i are independent (ease of presentation)
- We write $\mathbb{E}\left[|Y(x) M_i(x)|^2\right] = V_i(x)$

Minimal Variance Aggregation

We need to define what a good model is

$$\begin{cases} M_1(x) = Y(x) + \epsilon_1(x) \\ \vdots \\ M_n(x) = Y(x) + \epsilon_n(x) \end{cases} \text{ where } \begin{cases} \text{(For simplicity)} & \epsilon_i \text{ are independent} \\ \text{(Write)} & Var[\epsilon_i(x)] = V_i(x) \\ \text{(Assumption)} & \mathbb{E}[\epsilon_i(x)] = 0 \end{cases}$$

Then the Best Linear Unbiased Estimator (BLUE) of Y is:

$$\alpha_{V}(x)^{T}M(x) = \frac{\sum_{i=1}^{n} \frac{1}{V_{i}(x)} M_{i}(x)}{\sum_{i=1}^{n} \frac{1}{V_{i}(x)}}$$

Minimal Variance Aggregation

Problem: we don't have enough constraints

Add

$$\sum_{i=1}^{n} \alpha_i = 1$$

$$\alpha_{V}(x) = \underset{\sum_{i=1}^{n} a_{i}=1}{\operatorname{argmin}} \mathbb{E} \left[\left| Y(x) - \sum_{i=1}^{n} a_{i} M_{i}(x) \right|^{2} \right] \qquad \qquad \alpha_{V}(x)^{T} M(x) = \frac{\sum_{i=1}^{n} \frac{1}{V_{i}(x)} M_{i}(x)}{\sum_{i=1}^{n} \frac{1}{V_{i}(x)}} \right]$$

Learning the variance/error

To predict the variance, we:

- Write $V_i(x) = e^{\lambda_i(x)}$ where λ_i is a Machine Learning method (Gaussian process, neural network...) to ensure positivity
- Use the loss

$$\min_{\lambda_i \in \mathcal{H}} \sum_{k=1}^{N} \left[e^{\lambda_i(X_k)} - (Y(X_k) - M_i(X_k))^2 \right]^2 + \eta \|\lambda_i\|_{\mathcal{H}}^2$$

$$V_i(X_k) \qquad \text{Empirical variance}$$
Regularization

Theorem on linear regression:

Assume samples $(M_j, Y_j)_{j=1}^N$, which one has the best loss $\mathcal{L}(\alpha) = \mathbb{E}[|Y - \alpha^T M|^2]$?

$$\hat{\alpha}_E(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{j=1}^N \left[\left| Y_j - a^T M_j \right|^2 \right]$$

Minimal (Empirical) Error Aggregation

$$\mathcal{L}(\hat{\alpha}_E) = \mathcal{L}(\alpha^*) + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$$

$$\hat{\alpha}_{V}(x) = \underset{a \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \begin{cases} \sum_{j=1}^{N} \left[\left| Y_{j} - a^{T} M_{j} \right|^{2} \right] \\ \text{such that } \sum_{i=1}^{n} a_{i} = 1 \end{cases}$$

Minimal (Empirical) Variance Aggregation

There exists $\lambda \in [0,1]$ s.t.:

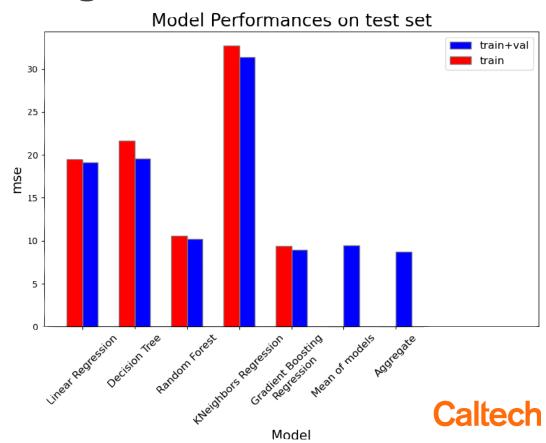
$$\mathscr{L}(\hat{\alpha}_V) = \frac{1}{\lambda} \mathscr{L}(\alpha^*) + \mathcal{O}\left(\frac{1}{N}\right)$$

In model aggregation, N is small and $\lambda \to 1$

Applications

The Boston housing dataset

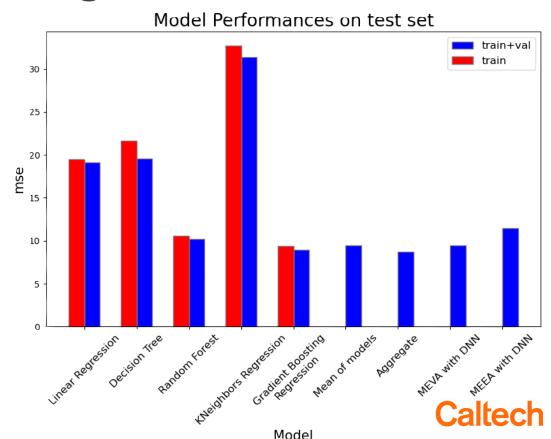
- Data: 506 samples $\{X_i, Y_i\}$
- Data is split into train-test-val
- Aggregation of red models using val data
 - Red models only see train data
 - Blue models for comparison see train+val
- · Aggregation is:
 - · Better than models aggregated
 - · Better than the mean
 - Better than all models



The Boston housing dataset

A comparison with minimal error aggregation:

- Take two identical Neural networks
- Train:
 - To minimize error (bad loss)
 - To estimate variance (our loss)

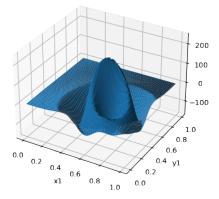


PDE examples

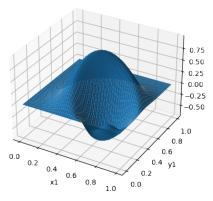
Given a PDE, we may have multiple solvers/approximations giving a solution. For example:

Laplace equation:
$$\begin{cases} \Delta u = f & on \ \Omega \\ u = 0 & on \ \partial \Omega \end{cases}$$

Given models $M_i(f) \approx u$, we want to learn the aggregation operator $\alpha(f)$

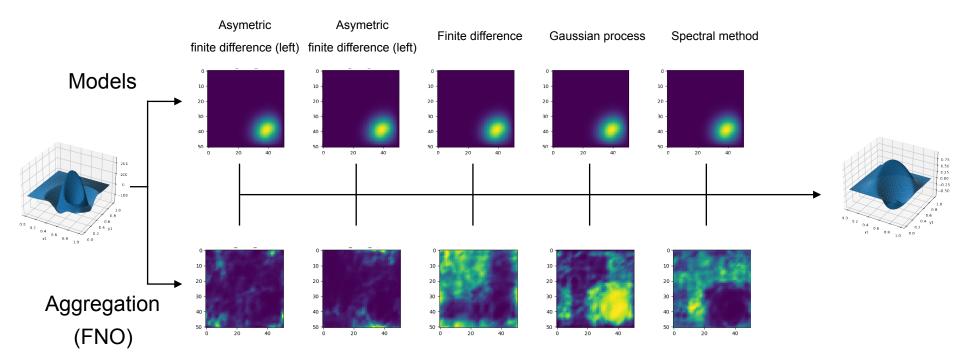


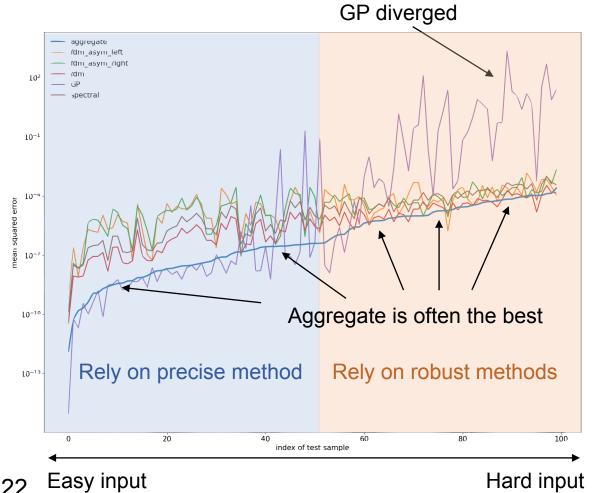
Random f



Random u

PDE example 1 - Laplace equation





Method	Geometric mean of MSE (log scale)
Aggregate	-6.282
FDM	-5.523
Spectral	-4.988
Gaussian process	-4.739
FDM asymetric (right)	-4.685
FDM asymetric (left)	-4.699

Hard input

PDE example 2 - Burger's equation

Consider Burger's equation on $\Omega = [0,1]^2$:

$$\begin{cases} \partial_t u + u \partial_x u = \nu \partial_{xx} u & \text{for } (x, t) \in \Omega \\ u(0, x) = f(x) & \text{for } x \in [0, 1] \\ u(t, 0) = u(t, 1) & \text{for } t \in [0, 1] \end{cases}$$

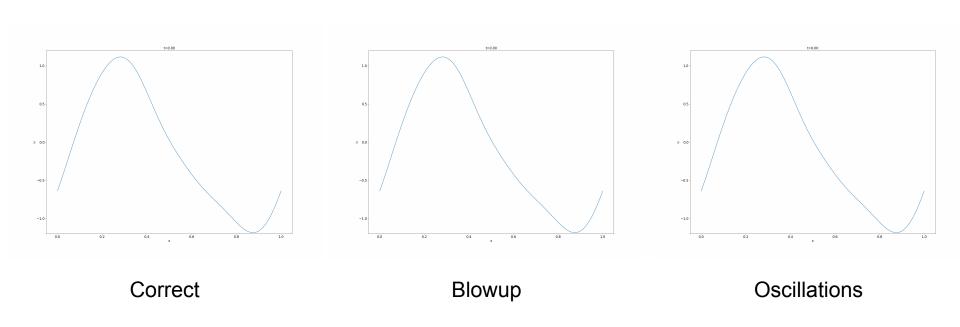
Choose:

• ν to be small

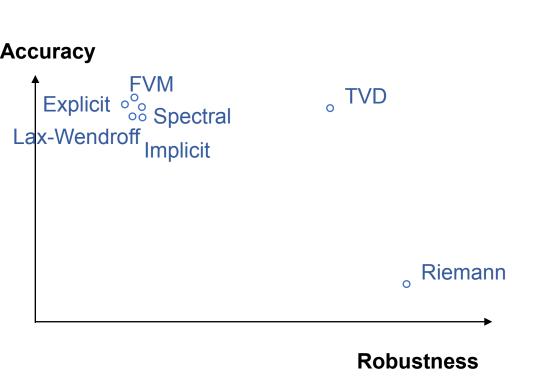
•
$$f \sim \mathcal{N}(0,K)$$
 where $K(x,y) = \exp\left(-\frac{2}{l^2}\sin^2\left(\pi|x_i - x_j|^2\right)\right)$

• i.e. *f* is periodic and infinitely differentiable

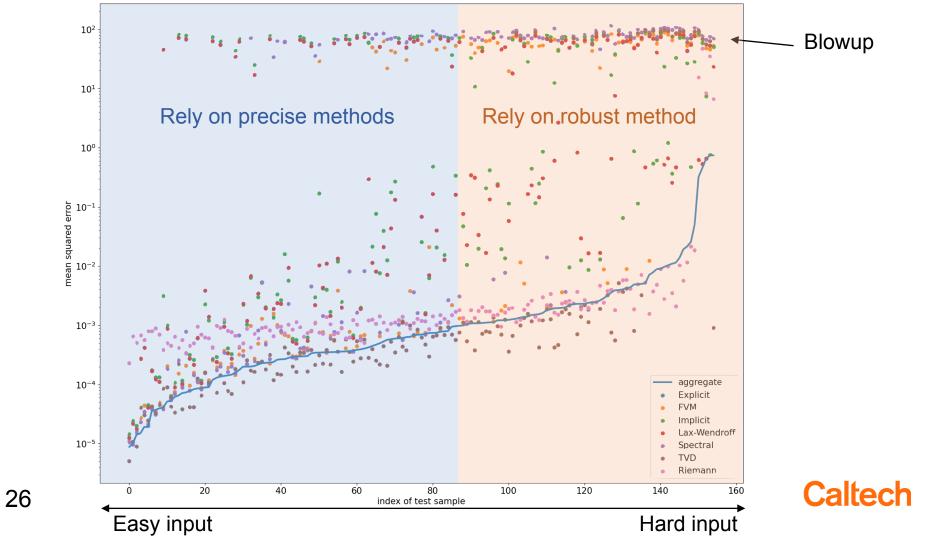
PDE example 2 - Burger's equation



PDE example 2 - Burger's equation



Method	Geometric mean of MSE (log scale)
Aggregate	-3.106
Riemann	-2.734
TVD	-2.568
FDM	-1.228
Spectral	-0.625
Implicit	-0.488
Explicit	-0.455
Lax-Wendroff	-0.455



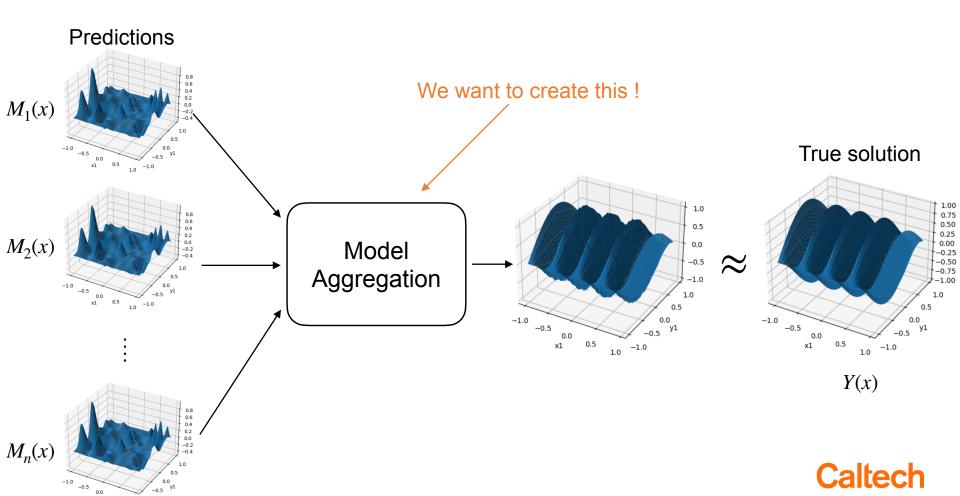
Conclusion

We introduce a simple framework to aggregate existing models

- Only requires model output (no assumption, non intrusive)
- Most useful in scientific computing settings with legacy models
- Aggregate any type of methods (ML, solvers...)

Bourdais, T., & Owhadi, H. (2024).

Model aggregation: minimizing empirical variance outperforms minimizing empirical error arXiv, accepted at ICLR2025



0.5

Given
$$\begin{array}{c} M_1(x) \\ \vdots \\ M_n(x) \end{array}$$

$$f(x, M_1(x), \ldots, M_n(x)) \approx Y(x)$$

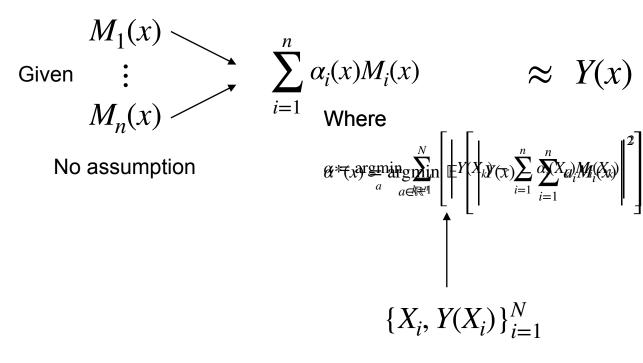
Given
$$\sum_{i=1}^{n} \alpha_i(x)$$

$$M_n(x) \qquad \sum_{i=1}^{n} \alpha_i(x)$$

$$When$$

$$\sum_{i=1}^{n} \alpha_i(x) M_i(x) \approx Y(x)$$
where
$$\alpha^*(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \mathbb{E} \left[\left| Y(x) - \sum_{i=1}^{n} a_i M_i(x) \right|^2 \right]$$

Simplification + Gaussian ideal case



- 1. Simplification + Gaussian ideal case
- 2. Directly minimize error

Does not work

Caltech

Given
$$\sum_{i=1}^{M_1(x)} \sum_{i=1}^n \alpha_i(x) M_i(x) \qquad \approx Y(x)$$

$$M_n(x) \qquad \qquad \sum_{i=1}^n \alpha_i(x) M_i(x) \qquad \approx Y(x)$$
 Where
$$\alpha_i(x) = \frac{\frac{1}{Var[M_i(x)]}}{\sum_{k=1}^n \frac{1}{Var[M_k(x)]}}$$

- 1. Simplification + Gaussian ideal case
- 2. Directly minimize error Does not work
- 3. Assume unbiased models

Given
$$M_1(x)$$

$$\vdots$$

$$M_n(x)$$

$$\mathbb{E}[M_i(x)] = 0$$

$$\alpha_i(x)M_i(x)$$

$$(x)W_i(x)$$

Where
$$\alpha_i(x) = -\frac{1}{4}$$

$$\approx 1$$

models

ideal case

$$e^{\lambda_i(x)} \approx Var[M_k(x)]$$

$$\lambda_i = \underset{l \in \mathcal{H}}{\operatorname{argmin}} \sum_{k=1}^N \left[e^{l(X_k)} - (Y(X_k) - M_i(X_k))^2 \right]^2 + \eta \|l\|_{\mathcal{H}}^2$$

1. Simplification + Gaussian

2. Directly minimize error

Does not work

3. Assume unbiased

$${X_i, Y(X_i)}_{i=1}^N$$

Caltech

ML regression

(Neural network, Gaussian process...)