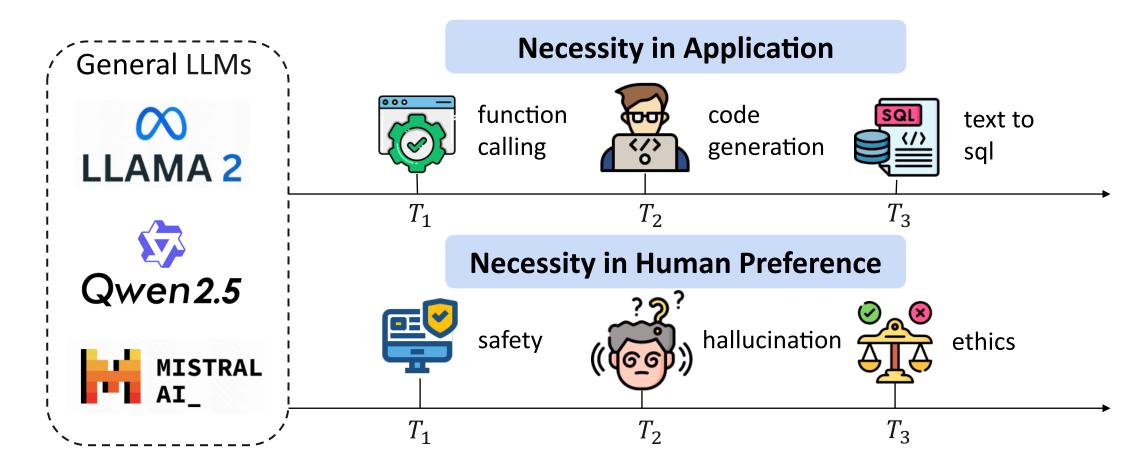


Unlocking the Power of Function Vectors for Characterizing and Mitigating Catastrophic Forgetting in Continual Instruction Tuning

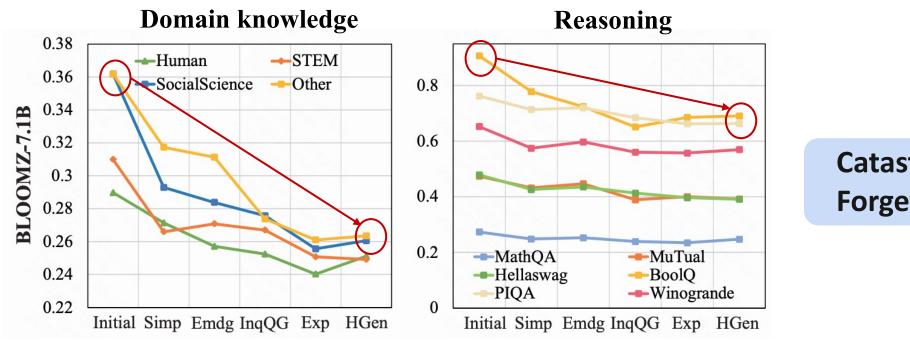
Gangwei Jiang^{1,2}, Caigao Jiang⁴, Zhaoyi Li^{1,2}, Siqiao Xue⁴, Jun Zhou⁴, Linqi Song², Defu Lian¹, Ying Wei³

1 - University of Science and Technology of China
2 - City University of Hongkong
3 - Zhejiang University
4 - Independent



Continual Instruction Tuning

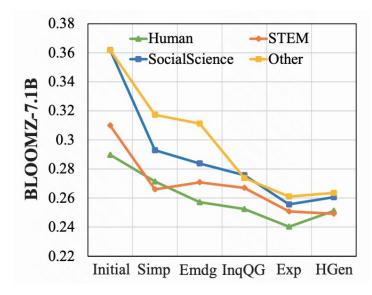
Continual Instruction Tuning: general LLMs streaming fine-tune on a sequence of tasks T_1, T_2, \ldots, T_N over time to adapt to new instructions.

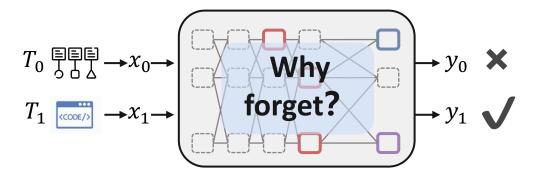


Catastrophic Forgetting of LLMs

Catastrophic Forgetting occurs during continual instruction tuning.

A decline in the model's performance on old tasks when adapting to new tasks, e.g., on domain knowledge and reasoning [1].

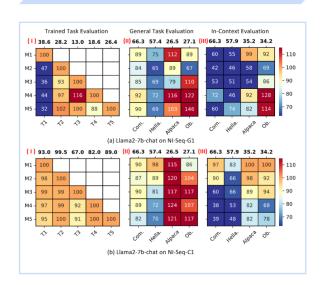

Catastrophic Forgetting

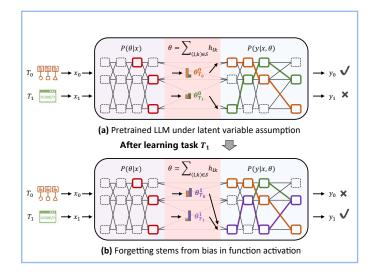

Motivation

Problems with existing works:

- > Analyze forgetting from limited perspectives.
- > Lack of understanding the internal mechanisms underlying model forgetting.

Analysis from limited perspectives [1]


Lack of understanding the internal mechanisms


Contributions

- > Investigate catastrophic forgetting of LLMs from multiple perspectives.
- > Characterize catastrophic forgetting with function vector hypothesis.
- > Mitigate catastrophic forgetting by proposing FV-guided training.

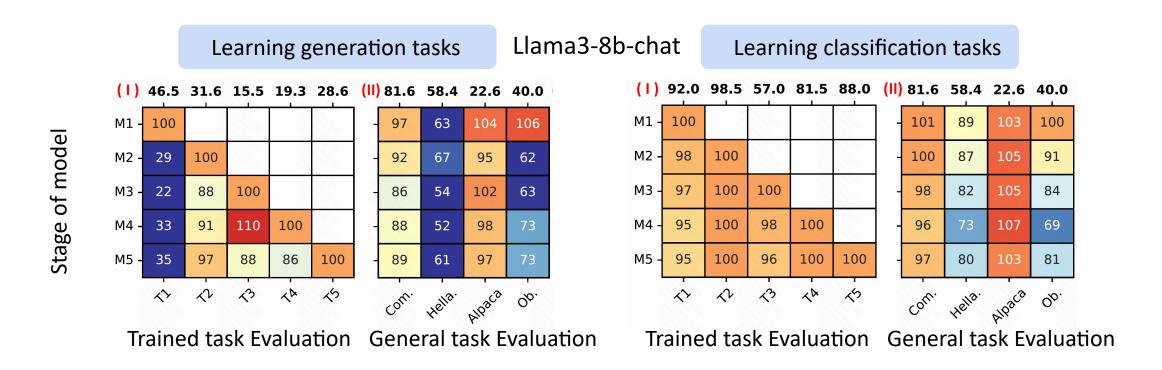
Investigate forgetting

Characterize forgetting

Mitigate forgetting

$$\ell_{FV} = \sum_{(l,k)\in\mathcal{S}} d\left(h_{lk}^{M_{j-1}}(x), h_{lk}^{M}(x)\right)$$

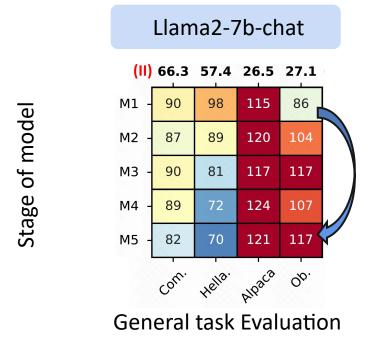
$$\ell_{KL} = KL[P_{M}(\cdot \mid x) \parallel$$

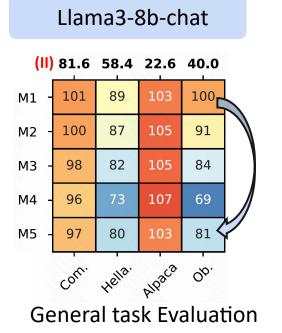

$$P_{M_{j-1}}^{h_{l} \to h_{l} + \theta_{T_{j}}^{0}}(\cdot \mid x)]$$

How Forgetting Behaves? Sequence Type

Investigate forgetting in continual instruction tuning from multiple perspectives, includes sequence type, evaluation ability, and model.

Instruction tuning sequences with generation tasks lead to greater forgetting compared to classification tasks.

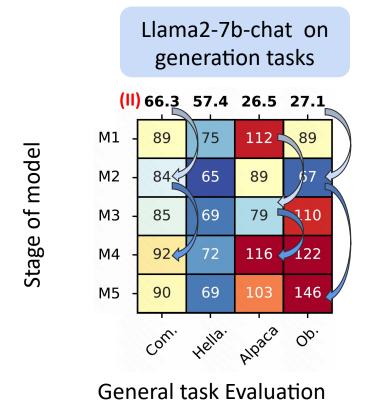


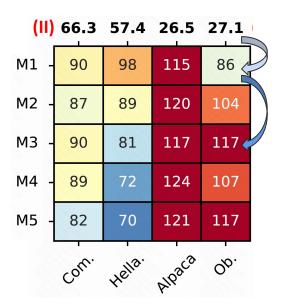

How Forgetting Behaves? Model

Investigate forgetting in continual instruction tuning from multiple perspectives, includes sequence type, evaluation ability, and model.

> Forgetting is model-dependent.

Learning classification tasks

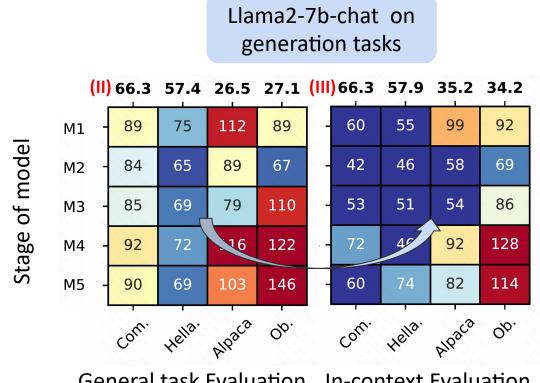



How Forgetting Behaves? Training Process

Investigate forgetting in continual instruction tuning from multiple perspectives, includes sequence type, evaluation ability, and model.

Forgetting may be naturally mitigated during training.

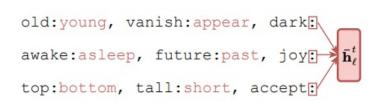
Llama2-7b-chat on classification tasks


First drop then raise

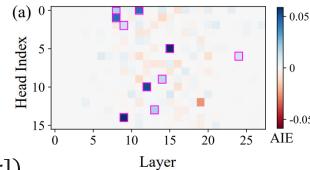
How Forgetting Behaves? Evaluation Ability

Investigate forgetting in continual instruction tuning from multiple perspectives, includes sequence type, evaluation ability, and model.

> In-context learning performance degrades significantly.


Why Forgetting Happens? The Role of Function Vectors

We identify the strongly correlation between function vector (FV) similarities and diverse forgetting patterns across task types and training stages.


Function Vector [1]

An internal representation of a task ability in model

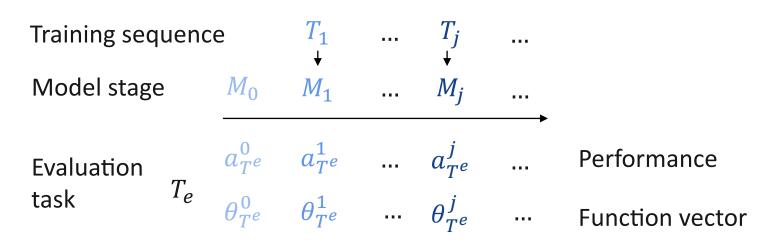
- 1. Average head activation
- Zero-shot intervention
- Function vector

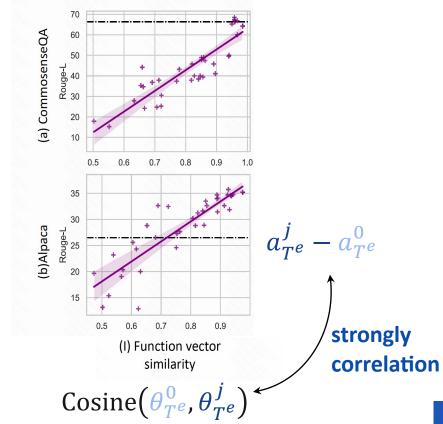
$$\begin{aligned} & \text{simple:} + \overline{\mathbf{h}}_{\ell}^t = \text{complex} \\ & \text{encode:} + \overline{\mathbf{h}}_{\ell}^t = \text{decode} \end{aligned}$$

$$\bar{h}_{lj}^{c} = \frac{1}{|D^{c}|} \sum_{(x) \in D^{c}} h_{\ell j}([p, x])$$

$$\bar{h}_{lj}^{c} = \frac{1}{|D^{c}|} \sum_{(x) \in D^{c}} h_{\ell j}([p, x])$$

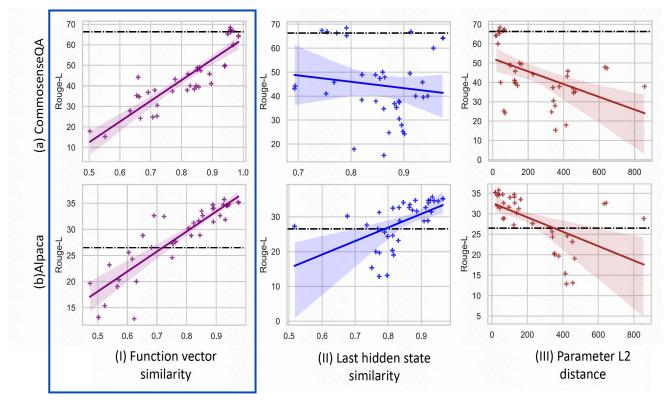
$$CE_{lj}([\hat{p}, x]) = P_{M_{h_{lj} \to \bar{h}_{l_{j}}^{c}}}(y_{i} \mid [x])$$


$$-P_{M}(y_{i} \mid [x])$$


$$\theta_T = \sum_{(l,k) \in \mathcal{S}} \bar{h}_{lk}^T$$

Why Forgetting Happens? The Role of Function Vectors

We identify the strongly correlation between function vector (FV) similarities and diverse forgetting patterns across task types and training stages.



Why Forgetting Happens? The Role of Function Vectors

When the similarity of the FV of the evaluation task before and after learning is high, forgetting is relatively mild.

Why Forgetting Happens? Characterization Hypothesis

We hypothesize that the intrinsic cause of forgetting is the **shift** in **task function** activation rather than overwriting previous functions

Reformulate LLM as latent variable model:

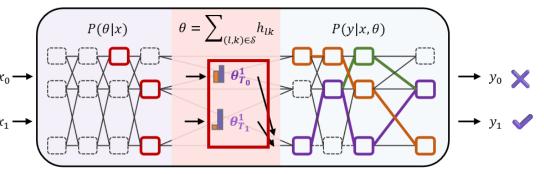
variable model:
$$P_{M}(y \mid x) = \int_{\Theta} P_{M}(y \mid \theta, x) P_{M}(\theta \mid x) d\theta$$

$$task-specific activation$$

$$function of function$$

 $\theta = \sum_{(l,k)\in\mathcal{S}} h_{lk}$ $P(y|x,\theta)$

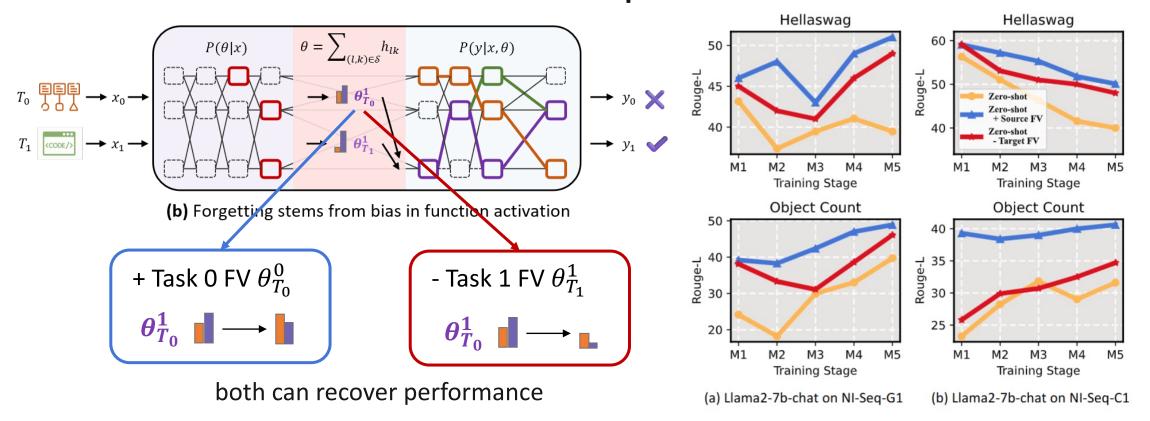
(a) Pretrained LLM under latent variable assumption


After learning task T_1

Reformulate function vector hypothesis:

vector hypothesis:
$$T_0 \xrightarrow{} x_0 \rightarrow x_0 \rightarrow x_0 \rightarrow x_0 \rightarrow x_1 \rightarrow x_1 \rightarrow x_1 \rightarrow x_1 \rightarrow x_1 \rightarrow x_2 \rightarrow x_1 \rightarrow x_2 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x$$

shift in θ_T <=> shift in activation of function


(b) Forgetting stems from bias in function activation

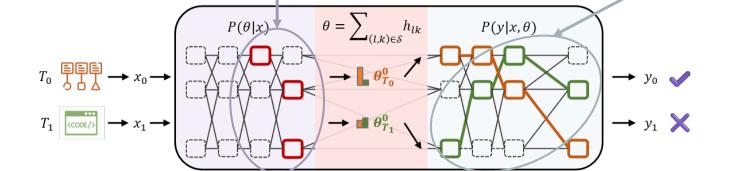
Why Forgetting Happens? Supporting Evidences

By manipulating the function vectors during forward, the model can recover task performance / mitigate forgetting.

Intervention experiments

How to Mitigate Forgetting?

A simple yet efficient design to mitigate forgetting, through **two regularization terms** to prevent the shift of function vector activation.


$$\ell_{FV} = \sum_{(l,k)\in\mathcal{S}} d\left(h_{lk}^{M_{j-1}}(x), h_{lk}^{M}(x)\right)$$

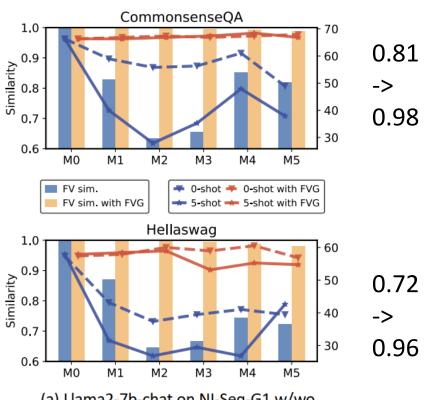
FV-guided KL-divergence loss

$$\ell_{KL} = KL[P_M(\cdot | x) || P_{\substack{h_l \to h_l + \theta_{T_j}^0 \\ M_{j-1}}} (\cdot | x)]$$

prevent FV shift

prompt model to use its original task function

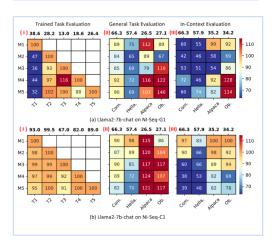
$$P_{M}(y \mid x) =$$


$$\int_{\Theta} P_{M}(y \mid \theta, x) P_{M}(\theta \mid x) d\theta$$
task-specific activation function of function

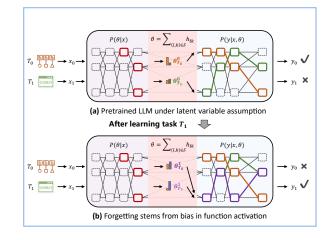
Effectively Mitigate Forgetting

	Method	GP↑	NI-Seq-G1 IP ↑	FP↑	GP ↑	NI-Seq-C1 IP ↑	FP↑	GP↑	NI-Seq-M1 IP ↑	FP↑
	M_0	49.85	54.43		49.85	54.43		49.85	54.43	7. Viz.
at	LoraInc	47.16	30.94	19 35	45.83	27.71	83.80	47.55	37.23	54 33
7b-ch	+FVG	+3.34	+25.25	+2.84	+3.98	+25.53	+1.70	+2.65	+15.78	+3.52
Llama?-8b-c.	Ewc	33.48	26.87	17.72	46.08	38.76	85.00	44.47	41.69	55.85
	+FVG	+15.73	+27.18	+0.85	+3.11	+15.96	+0.37	+6.18	+13.99	+0.01
	O-lora	45.15	31.90	22.67	41.54	20.54	79.33	50.16	39.52	56.94
	+FVG	+4.89	+23.59	+0.11	+8.38	+33.93	+6.2	+0.29	+14.95	-0.42
	InsCL	45.80	41.79	27.14	44.03	35.69	81.67	49.76	43.09	60.83
	+FVG	+2.65	+8.30	+0.91	+5.00	+16.11	+1.23	+0.98	+8.32	-2.22
	M_0	56.61	60.61		56.61	60.61		56.61	60.61	
	LoraInc	45.51	39.85	21.10	51.89	54.63	82.10	48.00	47.82	52.63
	+FVG	+7.79	+15.31	+3.10	+3.99	+5.19	+0.30	+4.88	+4.75	+5.78
	InsCL	46.48	49.46	28.53	52.11	57.30	82.50	49.46	53.50	60.92
	+FVG	+6.60	+8.06	-0.85	+3.52	+1.58	-0.60	+4.34	+2.75	-2.80
Mistral-7b-i.	M_0	47.55	57.51		47.55	57.51		47.55	57.51	Yo.
	LoraInc	42.81	38.82	19.78	48.00	53.00	85.4	49.79	51.02	57.01
fistra	+FVG	+4.49	+16.61	+0.64	+2.35	+2.67	-0.50	-2.41	+4.02	+0.43
2	InsCL	43.46	51.06	25.78	40.77	49.49	83.03	42.38	52.27	58.01
	+FVG	+2.71	+4.64	-0.30	+6.75	+4.27	+2.07	+6.13	+3.40	-0.8

Significantly alleviate the forgetting of model performance


(a) Llama2-7b-chat on NI-Seq-G1 w/wo function vector guided training

Successfully prevent the shift of the function vector


Thank you!

Q & A

Investigate forgetting

Characterize forgetting

Mitigate forgetting

$$\ell_{FV} = \sum_{(l,k)\in\mathcal{S}} d\left(h_{lk}^{M_{j-1}}(x), h_{lk}^{M}(x)\right)$$

$$\ell_{KL} = KL[P_{M}(\cdot \mid x) \parallel$$

$$P_{M_{j-1}^{h_{l} \to h_{l} + \theta_{T_{j}}^{0}}}(\cdot \mid x)]$$

Welcome to join me for a discussion in the poster time Thu 24 Apr 3 p.m. CST — 5:30 p.m. CST, Hall 3