



# Towards Auto-Regressive Next-Token Prediction: In-Context Learning Emerges from Generalization

Zixuan Gong\*, Xiaolin Hu\*, Huayi Tang, Yong Liu<sup>†</sup>

Gaoling School of Artificial Intelligence, Renmin University of China





## **Large Language Models**

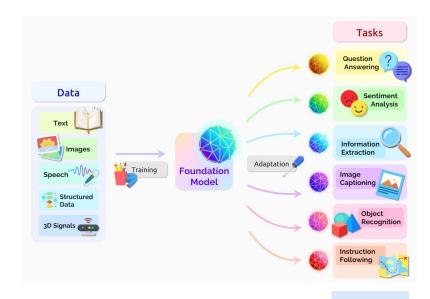
- Large language models (LLMs) have demonstrated remarkable in-context learning (ICL) abilities.
  - ICL means that the model solves new tasks based on prompts without further parameter fine-tuning.
- Two Limitations in ICL Theory
  - ☐ Limited *i.i.d.* Setting

Most studies focus on supervised function learning tasks where prompts are constructed with *i.i.d.* input-label pairs.

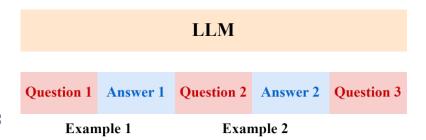
□ Lack of Emergence Explanation

Most literature answers **what** ICL does but falls short in explaining **how** pretrained LLMs can be good enough to emerge ICL ability.

The following fundamental questions remain relatively underexplored:



Answer 3



- (a) How can we model language tasks with token-dependency, going beyond the i.i.d. limitation?
- (b) How can ICL emerge from pre-trained LLMs?

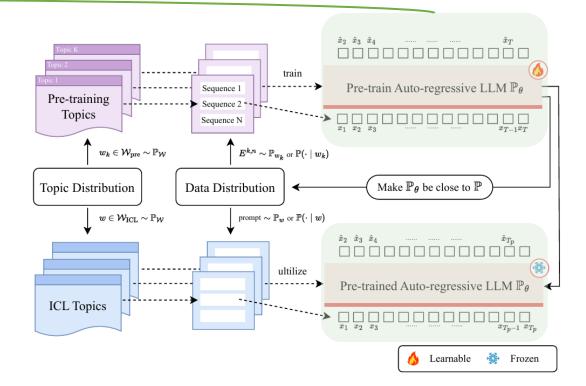




## Formalization of Pre-training and ICL Framework

- (a) How can we model language tasks with token-dependency, going beyond the i.i.d. limitation?
- Auto-Regressive Next-Token Prediction (AR-NTP)
  - **□** Dependent Tokens

Each subsequent token in sequences is generated based on the preceding tokens.







## Formalization of Pre-training and ICL Framework

- (a) How can we model language tasks with token-dependency, going beyond the i.i.d. limitation?
- Auto-Regressive Next-Token Prediction (AR-NTP)
  - **□** Dependent Tokens

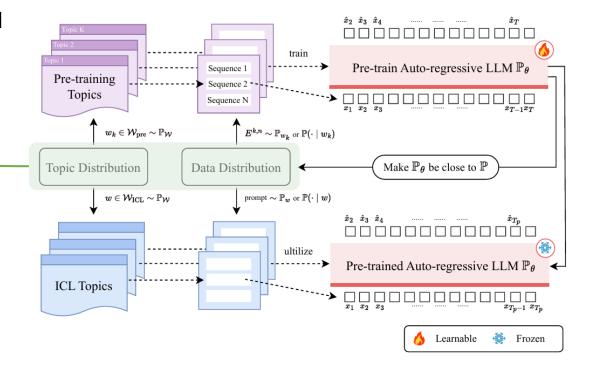
Each subsequent token in sequences is generated based on the preceding tokens.

- Two-Level Distribution
  - **□** Topic Distribution

The pre-trained topics and downstream topics satisfy the same topic distribution.

■ Data Distribution

All sequences under a given topic satisfy the same data distribution.







## ICL Emerges from **Generalization** of Pre-trained LLMs

(b) How can ICL emerge from pre-trained LLMs?



#### Population / Expected Risk Minimization (Two-Level Expectation)

#### **Start From Empirical Risk Minimization**

 $\underline{K}$  pre-training topics,  $\underline{N}$  pre-training sequences per topic,  $\underline{T}$  sequence length

**Outer Expectation** 

**Inner Expectation** 

Take expectation over topics  $\mathbb{E}_{w_k}$  T

Take expectation over sequences  $\mathbb{E}_{E^{k,n}}$ 

- \* Division on inner expectation (prompt token-dependency)
- Expectation over each token when given prefix sequences  $\mathbb{E}_{x_{t+1}^{k,n} \sim \mathbb{P}(\cdot | E_t^{k,n}, w_k)}$
- $\checkmark$  Expectation over prefix sequences  $\mathbb{E}_{E^{k,n}_t}$

#### **Empirical Loss**

$$L_{E}(\boldsymbol{\theta}, \boldsymbol{\mathcal{W}_{pre}}) = \frac{1}{KNT} \sum_{k=1}^{K} \sum_{n=1}^{N} \sum_{t=1}^{T} \log \frac{\mathbb{P}(x_{t+1}^{k,n} \mid E_{t}^{k,n}, w_{k})}{\mathbb{P}_{\boldsymbol{\theta}}(x_{t+1}^{k,n} \mid E_{t}^{k,n}, w_{k})}$$

#### **Population Loss**

$$L(\theta) = \frac{1}{T_p} \sum_{t=1}^{T_p} \mathbb{E}_w \mathbb{E}_{\text{prompt}_t} [D_{KL} (\mathbb{P}(\cdot | \text{prompt}_t, w) || \mathbb{P}_{\theta}(\cdot | \text{prompt}_t, w))]$$





## ICL Emerges from **Generalization** of Pre-trained LLMs

### (b) How can ICL emerge from pre-trained LLMs?



**Theorem (Informal):** Under some mild assumptions, for any  $0 < \delta < 1$ , with probability at least  $1 - \delta$ , the population

loss (Two-level expected loss)  $L(\theta)$  obeys,

$$\mathbb{E}_{\mu}[L(\theta)] = \mathcal{O}\left\{\sqrt{\frac{1}{(K - K')T_p}} \left[ D_{KL}(\mu||\nu_J) + \log \frac{1}{\delta} \right] + \underline{U(\mathcal{W}_{\text{pre}}, K, N, N', T)} \right\}$$

 $\mu$ : posterior distribution

topic-dependent prior distribution

from Generalization of sequences

$$\mathcal{O}\left\{\sqrt{\frac{1}{K(N-N')T}}\left[D_{KL}(\mu||\nu_{J}) + \log\frac{1}{\delta}\right] - \epsilon_{\mathrm{opt}} + \sqrt{\frac{\log 1/\delta}{K(N-N')T}}\right\}$$

- ✓ Refine the representation of KL divergence, and provide optimization-dependent generalization bounds.
- ✓ Through continuous analysis techniques on SGD.

data-dependent prior distribution





## ICL Emerges from **Generalization** of Pre-trained LLMs

(b) How can ICL emerge from pre-trained LLMs?



**Theorem (Informal):** Under some mild assumptions, for any  $0 < \delta < 1$ , with probability at least  $1 - \delta$ , the population loss (Two-level expected loss)  $L(\theta)$  obeys,

$$\mathbb{E}_{\mu}[L(\theta)] = \mathcal{O}\left\{\sqrt{\frac{1}{(K - K')T_p}}\left[D_{KL}(\mu||\nu_J) + \log\frac{1}{\delta}\right] + U(\mathcal{W}_{\text{pre}}, K, N, N', T)\right\}$$

### **Theoretical Insights**

- The impact of pre-training topics, sequences and sequence length.
- The impact of parameter size.
- The data-dependent and topic-dependent prior uniquely enhances optimization (origin from the KL part).
- May provide practical guidance on model training, data selection and deduplication (origin from the KL part).





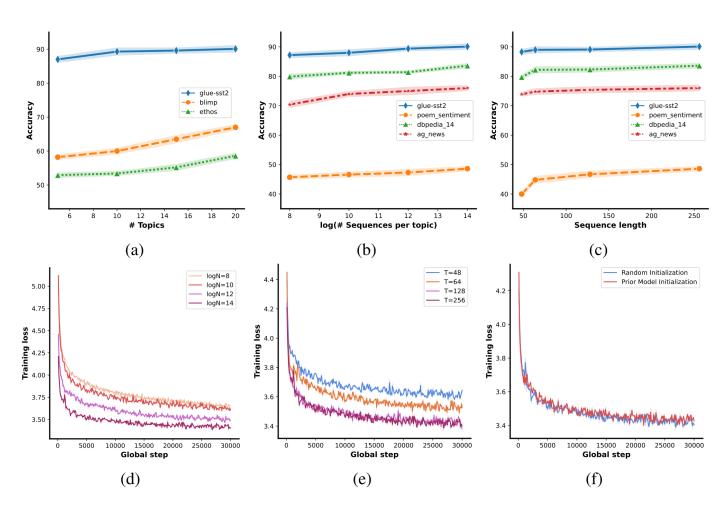
## **Experiments** on Real-World Language Dataset

- Experiments on Linear Dynamic System.
- Experiments on Synthetic Language Dataset.
- Experiments on Real-World Language Dataset.
  - $\Box$  Observation (1): Separate Effects of K, N, T.
  - **□** Observation (2): Optimization Process.

Faster training leads to better generalization.

- **□** Observation (3): Prior Model Initialization.
- 1. Random Initialization Regime. Nearly 7 hours.
- 2. Prior model initialization Regime. Nearly 4.5 hours.

Prior model initialization not only accelerates training but also stabilizes the training process (especially in the early stages), leading to comparable model performance.







## Towards Auto-Regressive Next-Token Prediction: In-Context Learning Emerges from Generalization

Zixuan Gong\*, Xiaolin Hu\*, Huayi Tang, Yong Liu<sup>†</sup>
Gaoling School of Artificial Intelligence Renmin University of China

Thanks!