

ADBM: Adversarial diffusion bridge model for reliable adversarial purification

Xiao Li, Wenxuan Sun, Huanran Chen, Qiongxiu Li, Yining Liu, Yingzhe He, Jie Shi, Xiaolin Hu

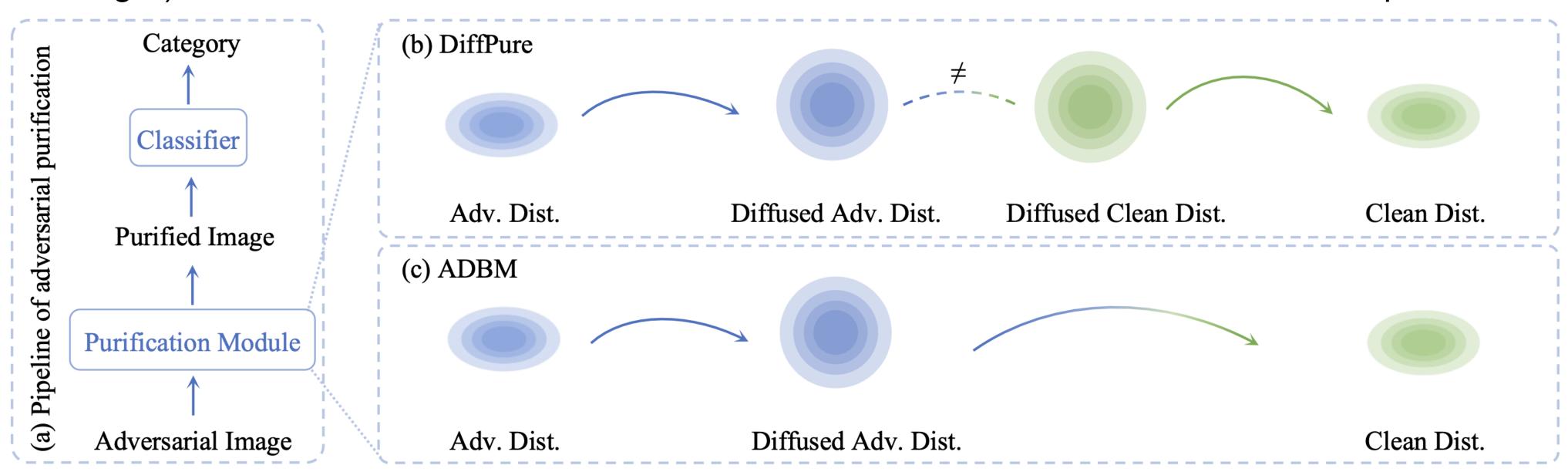
Paper

Summary

- ▶ Problem: Diffusion-Based Purification (DBP) methods like DiffPure have shown promise in defending against adversarial examples. However, they often suffer from a trade-off between effective noise removal and accurate data recovery. Additionally, evaluations of such methods have been questioned due to reliance on weak adaptive attacks.
- Contribution: We first build a reliable evaluation for the robustness of DBP. Then we introduce the Adversarial Diffusion Bridge Model (ADBM), which constructs a direct reverse bridge from diffused adversarial example back to clean examples.
- ➤ **Results**: Through theoretical analysis and extensive experiments, ADBM demonstrates superior defense performance across various scenarios, highlighting its reliability and potential for practical applications.

DiffPure v.s. ADBM

- DiffPure relies on the assumption that the two diffused distributions are sufficiently close, such that the original reverse process can recover the diffused adversarial data distribution.
- ➤ Unlike original diffusion models relying on the similarity between the diffused distributions of clean and adversarial examples for a balanced trade-off, ADBM constructs a direct reverse process (or "bridge") from the diffused adversarial data distribution to the distribution of clean examples



Theoretical Analysis

Theorem 1. Given an adversarial example \mathbf{x}_0^a and assuming the training loss $L_b \leq \delta$, the distance between the purified example of ADBM and the clean example \mathbf{x}_0 , denoted as $\|\hat{\mathbf{x}}_0 - \mathbf{x}_0\|$, is bounded by δ (constant omitted) in expectation when using a one-step DDIM sampler. Specifically, we have $\mathbb{E}_{\epsilon} \left[\|\hat{\mathbf{x}}_0 - \mathbf{x}_0\|^2 \right] \leq \frac{(1-\bar{\alpha}_T)T}{\bar{\alpha}_T} \delta$, where $\frac{(1-\bar{\alpha}_T)T}{\bar{\alpha}_T}$ is the constant.

Theorem 1 implies that if the training loss of ADBM converges to zero, it can **perfectly** remove adversarial noises by employing a one-step DDIM sampler.

Theorem 2. Denote the probability of reversing the adversarial example to the clean example using ADBM and DiffPure as P(B) and P(D), respectively. Then $P(\cdot) = \int \mathbb{1}_{\{\mathbf{x}_0 \notin \mathbb{D}_a\}} p(\mathbf{x}_0 | \hat{\mathbf{x}}_t) d\mathbf{x}_0$, where \mathbb{D}_a denotes the set of adversarial examples. If the timestep is infinite, the following inequality holds: P(B) > P(D),

wherei

for
$$P(B): p(\mathbf{x}_0|\hat{\mathbf{x}}_t) \propto \exp\left(-\frac{\|\mathbf{x}_t^d - \sqrt{\bar{\alpha}_t}\mathbf{x}_0^a\|^2}{2(1-\bar{\alpha}_t)}\right),$$
 (10)

for
$$P(D): p(\mathbf{x}_0|\hat{\mathbf{x}}_t) \propto \exp\left(-\frac{\|\mathbf{x}_t^a - \sqrt{\bar{\alpha}_t}\mathbf{x}_0\|^2}{2(1-\bar{\alpha}_t)}\right).$$
 (11)

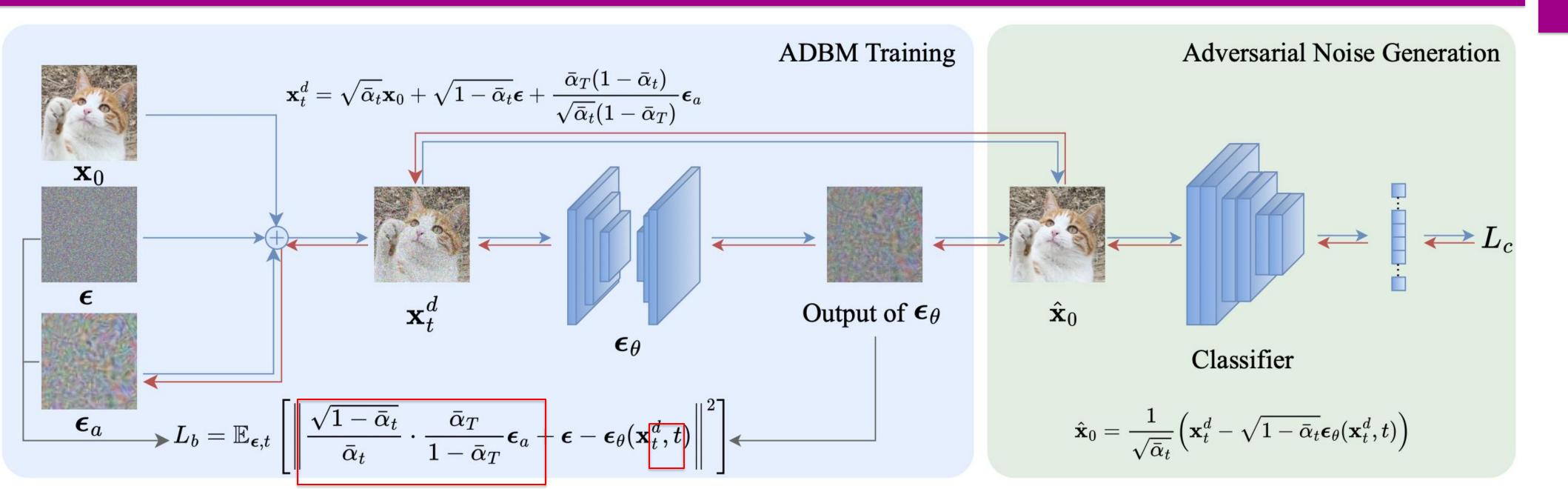
Theorem 2 indicates that with infinite reverse timesteps, adversarial examples purified with ADBM are more likely to align with the clean data distribution than those with DiffPure.

Reliable Evaluation on DBP

Evaluation	Clean Acc	Robust Acc	
BPDA (Athalye et al., 2018)	90.49 ± 0.97	81.40 ± 0.16	
Nie et al. (2022)	90.07 ± 0.97	71.29 ± 0.55	
Chen et al. (2023a)	90.97	53.52	
Lee & Kim (2023)	90.43 ± 0.60	51.13 ± 0.87	
Ours (EOT=20, steps=200)		45.83 ± 1.27	
Ours (EOT=40, steps=200)	90.49 ± 0.97	45.64 ± 1.14	
Ours (EOT=20, steps=400)		46.16 ± 1.33	

- We first develop a simple yet reliable adaptive attack evaluation method for DBP, achieving the SOTA attack success rate for DiffPure.
- > Evaluation: PGD-200+EOT-20 w/ full gradient

ADBM Framework



where $\mathbf{x}_t^d = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon} + \frac{\bar{\alpha}_T(1-\bar{\alpha}_t)}{\sqrt{\bar{\alpha}_t}(1-\bar{\alpha}_T)}\boldsymbol{\epsilon}_{a'}$ $\boldsymbol{\epsilon}_a$ denotes the adversarial noise can can be generated by $\frac{\partial L_c}{\partial \boldsymbol{\epsilon}_a}$. ADBM injects scaled adversarial noise into the training compared with the original training objective of diffusion models

Experimental Results

				-		
Method Type	Type	e Clean Acc	Robust Acc			
	Cicali Acc -	l_{∞} norm	l_1 norm	l_2 norm	Average	
Vanilla	-	97.02	0.00	0.00	0.00	0.00
[41]		91.10	65.92	8.26	27.56	33.91
[42]	AT	88.54	64.26	12.06	32.29	36.20
Augment w/ Diff [24]	AI	88.74	66.18	9.76	28.73	34.89
Augment w/ Diff [25]		93.25	70.72	8.48	28.98	36.06
[13]		91.89	4.56	8.68	7.25	6.83
[14]		87.93	37.65	36.87	57.81	44.11
DiffPure+Guide [26]		93.16	22.07	28.71	35.74	28.84
Diff+ScoreOpt [28]	AP	91.41	13.28	10.94	28.91	17.71
DiffPure+Langevin [27]		92.18	43.75	39.84	55.47	46.35
DiffPure [16]		92.5 ± 0.5	42.2 ± 2.1	44.3 ± 1.3	60.8 ± 2.3	49.1 ± 1.7
ADBM (Ours)		91.9 ± 0.8	47.7 ± 2.2	49.6 ± 2.2	63.3 ± 1.9	53.5 ± 2.1

- ➤ ADBM achieved better robustness than DiffPure under reliable attacks under 1 reverse step.
- ➤ ADBM exhibited much better robustness than AT methods when facing unseen threats.