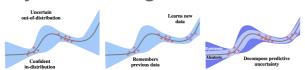
sam@normalcomputing.ai

with Kaelan Donatella, Johnathan Chiu, Phoebe Klett, Daniel Simpson and open source contributors

openreview.net/forum?id=fifXzmzeGv github.com/normal-computing/posteriors

Bayesian Learning



Generalization 🔽

Continual learning 🔽 Decomposition of uncertainty 🔽

Unification of optimizers, samplers and (Bayesian) deep ensembles

Formulate Bayesian samplers in continuous-time:

$$dz = [D+Q]N^{-1}\nabla\log\pi(z)dt + \sqrt{2TD}dw$$
 for symmetric D , skew-symmetric Q and z often on an extended space, e.g. $z=(\theta,m)$ for momenta m .

 $\mathcal{T} = N^{-1} \implies \mathsf{Posterior} \, \mathsf{sampling}$

$$\mathcal{T} = 0 \implies \text{Optimization}$$

Many parallel chains ⇒ Bayesian deep ensemble (Parallel stochastic gradient MCMC)

Many parallel chains & $T=0 \implies \text{Deep ensemble}$

posteriors Θ is an open source PvTorch package for scalable Bayesian learning.

The key features outlining its philosophy are:

- Composability: Use with transformers, lightning, Llama, torchopt, pyro,
- Extensible: Easily add new methods to within the transform framework
- Functional: IAX-like, easier to test, compose, debug and closer to maths
- Scalable: Enforced support for mini-batches
- **Swappable**: Easily change methods



Bayesian Llama 3 🦙

A Bayesian model allows you to decompose predictive uncertainty

Total = $TU = H[p(u \mid x)]$

Aleatoric = $\mathbf{AU} = \mathbb{E}_{p(\theta|y_{0,N})}[H[p(y \mid x, \theta)]]$ H[p] = entropy of p

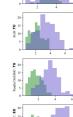
Epistemic = TU - AU

Epistemic uncertainty is a better indicator of hallucinations as semantic uncertainty (synonyms, starts of sentences etc) is captured by aleatoric uncertainty

Right: Bayesian LLM fine-tuned on textbooks.

Different uncertainty metrics as classifiers of out of distribution (Samoan) inputs.

Ideal case would be a complete separation of green and purple histograms.

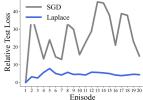


Continual Learning 🕃

 $p(\theta \mid y_{1:N}) \propto p(\theta)p(y_{1:N} \mid \theta) \propto p(\theta \mid y_{1:N-1})p(y_N \mid \theta),$

Exact Bayes has no forgetting, in the sense that it values y_N equal to y_1 .

Simple Bayesian approximation mitigates forgetting, here in continual training of Llama 2



SGD Llama 2 forgets earlier books 😉 (episodes) as it reads new ones. Replace point estimates with Laplace posteriors and Llama 2 has improved performance on earlier books 📚

NORMAL Computing