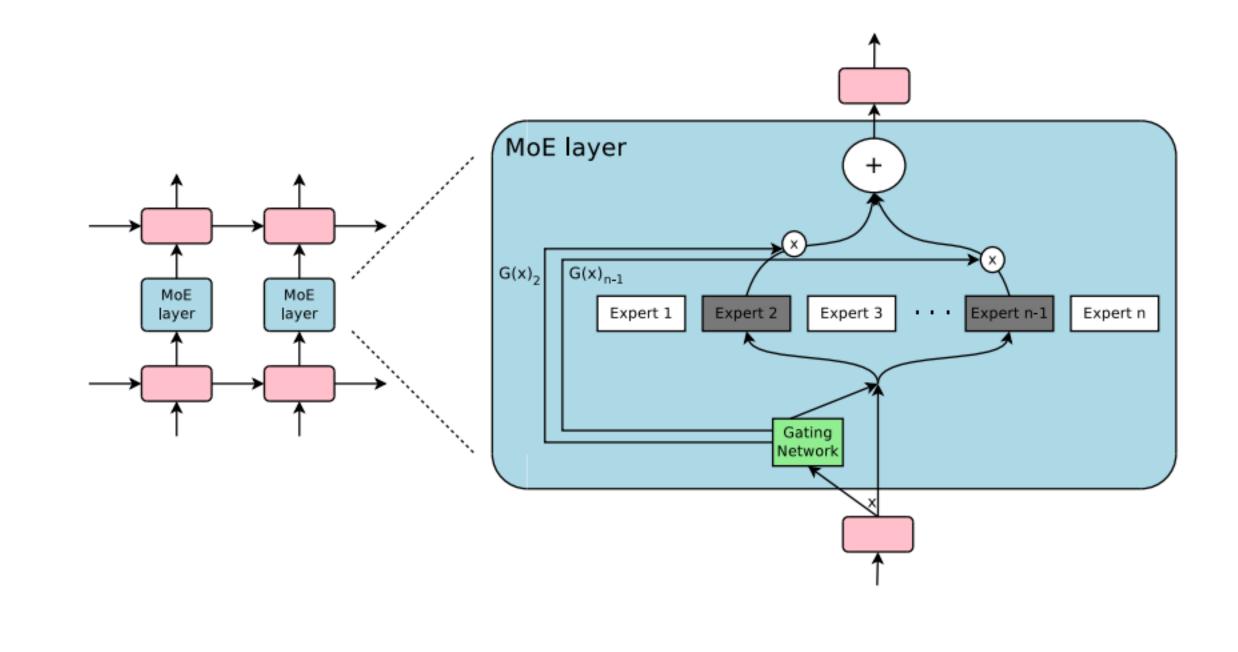
Statistical Advantages of Perturbing Cosine Router in Mixture of Experts

Huy Nguyen, Pedram Akbarian, Trang Pham, Trang Nguyen, Shuijan Zhang, Nhat Ho

Presenter: Huy Nguyen
The University of Texas at Austin



Sparse Mixture of Experts

- Sparse mixture of experts (MoE) [1] employs an adaptive router to activate only a few experts per input.
- Increase the model capacity while remaining the computation overhead.
- Formulation:

$$y = \sum_{i=1}^{k} \operatorname{softmax}(\operatorname{TopK}(\mathcal{R}(x)))_{i} \cdot h(x, \eta_{i})$$
Router Experts

Router Choices

$$y = \sum_{i=1}^{k} \operatorname{softmax}(\operatorname{TopK}(\mathcal{R}(x)))_{i} \cdot h(x, \eta_{i})$$

- Linear router [1]: $\mathcal{R}(x) := \left(\beta_{1i}^{\mathsf{T}} x + \beta_{0i}\right)_{i=1}^k \to \text{Representation collapse issue [2].}$
- Cosine router [2]: $\mathcal{R}(x) := \left(\frac{\beta_{1i}^{\mathsf{T}} x}{\|\beta_{1i}\| \cdot \|x\|} + \beta_{0i}\right)_{i=1}^{k} \to \text{Alleviate representation collapse but slow expert convergence.}$
- Perturbed cosine Router (Ours): $\mathcal{R}(x) := \left(\frac{\beta_{1i}^{\top}x}{(\|\beta_{1i}\| + \tau_1) \cdot (\|x\| + \tau_2)} + \beta_{0i}\right)_{i=1}^{\kappa} \rightarrow \text{Alleviate}$ representation collapse and improve expert convergence.
- [1] N. Shazeer et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In ICLR, 2017.
- [2] Z. Chi et al. On the Representation Collapse of Sparse Mixture of Experts. Advances in NeurIPS, 2022.

Expert Convergence Analysis

• Setup: Suppose that the data $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ in $\mathbb{R}^d \times \mathbb{R}$ are sampled from the regression model:

$$Y_i = f_{G_*}(X_i) + \varepsilon_i, \quad i = 1, 2, ..., n,$$

- IID input: $X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} \mu$
- Independent Gaussian noise variables: $\varepsilon_i | X_i \sim \mathcal{N}(0,\nu)$
- The regression function: $f_{G_*}(x) := \sum_{i=1}^{k_*} \operatorname{softmax}(\mathcal{R}(x; \beta_1^*, \beta_0^*))_i \cdot h(x, \eta_i^*)$.

Least Squares Estimation

Least squares estimation: We estimate parameters via estimating mixing measure $G_* = \sum_{i=1}^{\kappa_*} \exp(\beta_{0i}^*) \delta_{(\beta_{1i}^*, \eta_i^*)}$:

$$\widehat{G}_n := \arg\min_{G} \sum_{i=1}^n \left(Y_i - f_G(X_i) \right)^2.$$

• Goals: Determine the convergence rate of expert estimation $h(x, \hat{\eta}_i)$ to $h(x, \eta_i^*)$.

Practical Implications

Table 1: Summary of expert convergence rates.

Routers/ Experts	Linear: $a^{\top}x + b$	Polynomial: $(a^{\top}x+b)^p, p \geq 2$	ReLU FFN
Linear	$1/\log^{ au}(n)$	$1/\log^\tau(n)$	$n^{-1/4}$
Cosine	$1/\log^{\tau}(n)$	$1/\log^{\tau}(n)$	$1/\log^{\tau}(n)$
Perturbed cosine	$1/\log^\tau(n)$	$n^{-1/4}$	$n^{-1/4}$

- (P.1) Expert convergence rates are faster when using the perturbed cosine router than than those when using the cosine/linear router.
- **(P.2)** The perturbed cosine router is **compatible with a broader range of experts** (polynomial and ReLU FFN experts) than the cosine/linear router.

Experiments: Language Modeling

• Language modeling tasks. We evaluate the model's pre-training capabilities on character-level language modeling using Enwik8 and Text8 datasets [3], and assess its word-level language modeling performance on Wikitext-103 [4].

Table 2: Performance of vanilla and perturbed cosine routers on language modeling tasks.

Router/Experts	Enwik	Enwik8 (BPC ↓) Text8 (BPC ↓)				Wikitext-103 (PPL ↓)		
	Small	Medium	Small	Medium	Small	Medium		
Cosine	1.213	1.161	1.310	1.271	90.070	38.018		
Perturbed cosine	1.197	1.147	1.303	1.251	89.910	37.859		

^[3] N. Mahoney. Large text compression benchmark, 2011.

^[4] S. Merity et al. Pointer sentinel mixture models, 2016.

Experiments: Domain Generalization

• **Domain generalization tasks:** Generalizing a model's performance to unseen test domains with distributions different from those encountered during training.

Table 3: Average out-of-distribution test accuracies.

Router/Experts	PACS	VLCS	OfficeHome	TerraIncognita	DomainNet Avg.
Linear	86.33	78.15	73.02	41.30	48.19 65.40
Cosine	87.22	78.99	73.27	45.55	48.45 66.70
Perturbed cosine	89.36	80.01	74.09	49.87	48.51 68.37

Table 4: Per-domain performance of PACS, VLCS, OfficeHome, TerraIncognita.

	Router/Experts	clipart	infograph	painting	quickdraw	real	sketch
DomainNet	Linear	69.11	24.95	54.81	16.88	68.95	54.41
	Cosine	68.05	24.48	<i>55.</i> 75	17.39	69.41	55.59
	Perturbed	68.31	24.52	55.03	17.90	69.46	55.83

Table 5: Per-domain performance of DomainNet.

	Router/Experts	A	C	P	S
PACS	Linear	87.29	81.20	98.50	78.34
	Cosine	89.24	86.11	97.60	75.92
	Perturbed cosine	89.87	86.97	97.90	82.68
	Router/Experts	C	L	S	V
VLCS	Linear	97.53	63.65	74.09	77.33
	Cosine	98.59	67.42	70.88	79.07
	Perturbed cosine	98.59	67.80	74.70	78.95
	Router/Experts	A	\mathbf{C}	P	R
OfficeHome	Router/Experts Linear	A 72.99	C 57.27	P 79.03	R 82.78
OfficeHome					
OfficeHome	Linear	72.99	57.27	79.03	82.78
OfficeHome	Linear Cosine	72.99 73.40	57.27 57.27	79.03 78.69	82.78 83.70
OfficeHome TerraIncognita	Linear Cosine Perturbed cosine	72.99 73.40 74.64	57.27 57.27 57.85	79.03 78.69 79.59	82.78 83.70 84.27
	Linear Cosine Perturbed cosine Router/Experts	72.99 73.40 74.64 L100	57.27 57.27 57.85	79.03 78.69 79.59 L43	82.78 83.70 84.27 L46
	Linear Cosine Perturbed cosine Router/Experts Linear	72.99 73.40 74.64 L100 45.99	57.27 57.27 57.85 L30 28.51	79.03 78.69 79.59 L43 54.66	82.78 83.70 84.27 L46 36.05

Thank You!