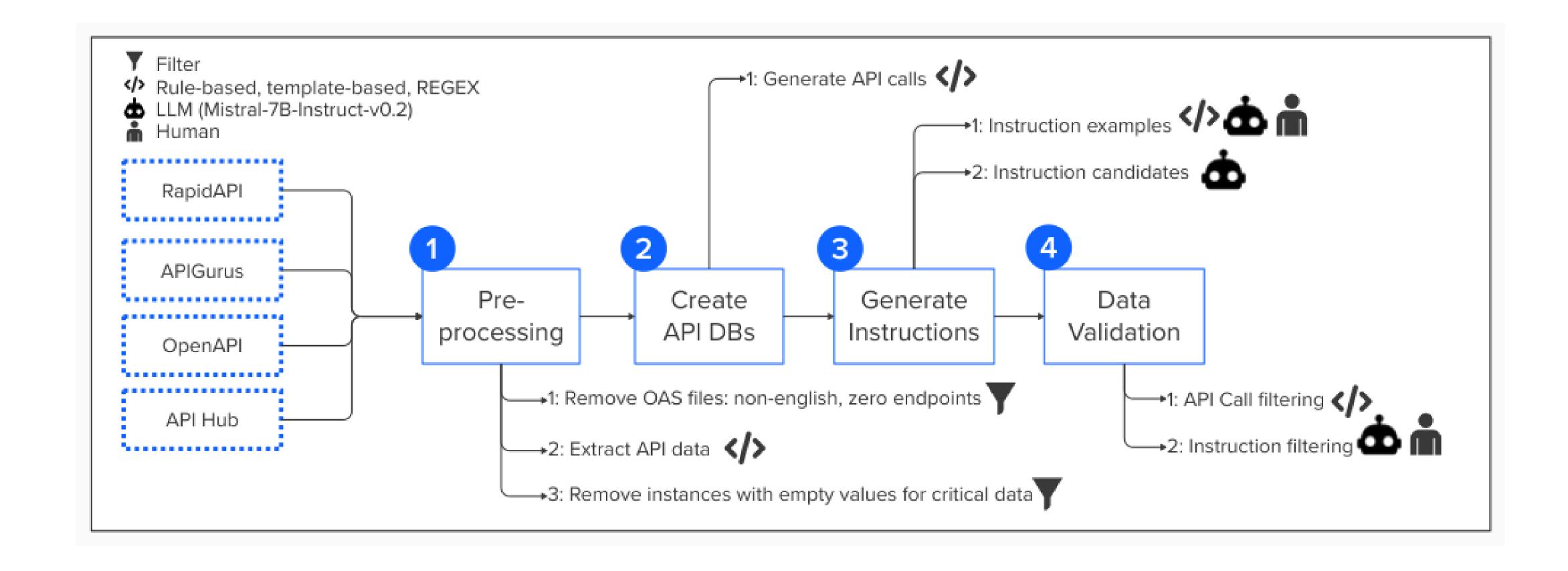
API Pack: A Massive Multi-Programming Language Dataset for API Call Generation

Zhen Guo MIT EECS Adriana Meza Soria*
MIT-IBM Watson AI lab

Wei Sun IBM Research

Yikang Shen MIT-IBM Watson AI lab

Rameswar Panda MIT-IBM Watson AI lab


Why are API and tool datasets important?

- API datasets are important to improve the ability of large language models (LLMs) to generate API calls.
- Accurate API call generation is a key capability required in LLMs to create LLM powered systems able to
 interact with API ecosystems and complete end-to-end complex operations.
- Previous work focused on API intent detection (finding the right API for a task), but generating API call code in multiple programming languages has received less attention.
- Moreover, most publicly available API and tool datasets are relatively small.

Feature	API Pack (this work)	APIBench (Gorilla)	ToolBench	ToolBench (ToolLLM)	API Bank	ToolAlpaca	ToolFormer
API call intent detection?	√	√	√	√	√	√	✓
API call code generation?	/ (10)	V(Dython)	(Curl Duthon)	× ×	Ž	×	Ž
Multi-programming language? Multi-API call scenario?	√ (10) ×	X(Python)	✓(Curl, Python)	2	ŷ	2	2
Data generation method	custom	self-instruct	self-instruct	custom	custom	custom	custom
# of Sources	4	3	8	1	53	/	5
# of APIs / Tools	11,213	1,645	8	16,464	53	400	5
# of API calls # of Instances	1,128,599 1,128,599	16,450 16,450	2,746	37,204 12,657	568 264	3,938 3,938	9,400 22,453

API Pack curation

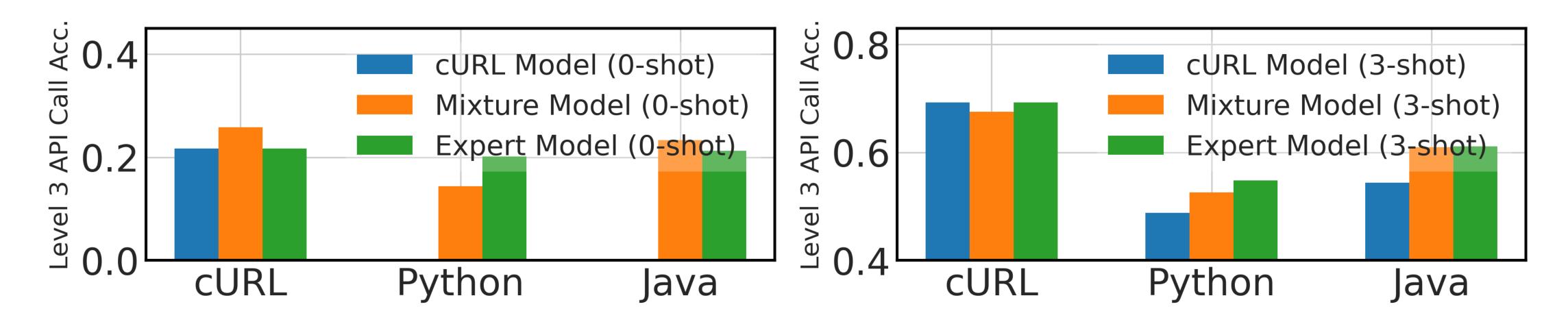
Experimental design

Evaluation framework

- Scenario 1: Generalization to new instructions (seen APIs and endpoints)
- Scenario 2: Generalization to new endpoints (seen APIs and new endpoints)
- Scenario 3: Generalization to new APIs (unseen APIs and endpoints)

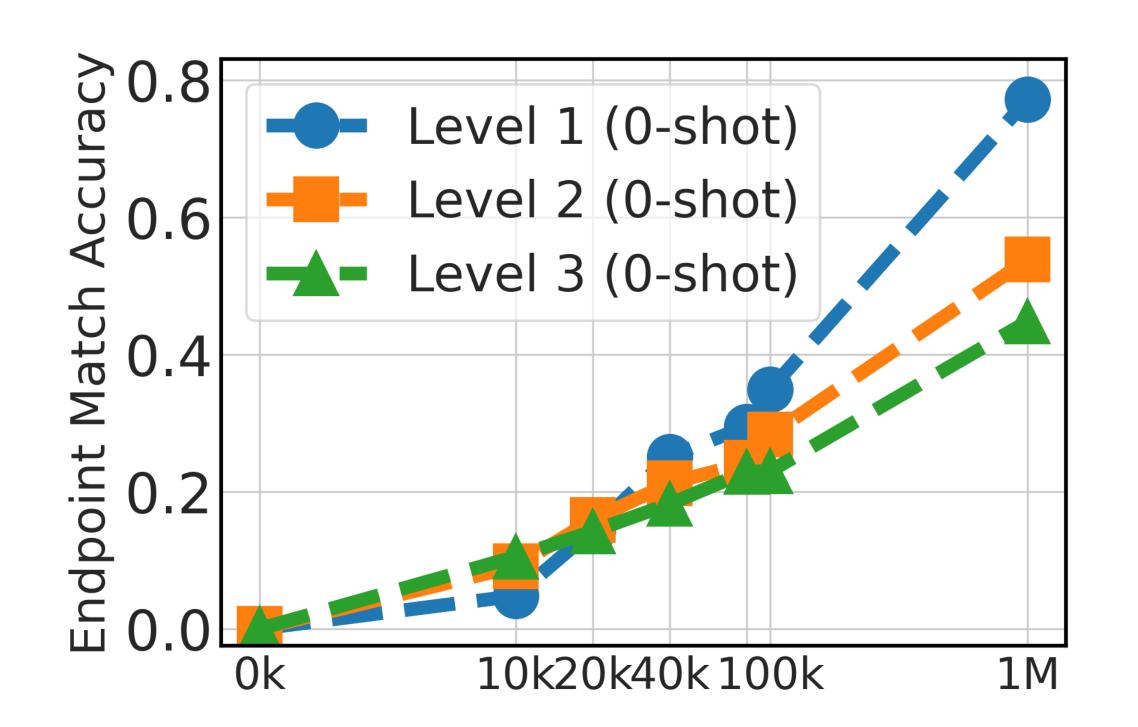
Experimental settings

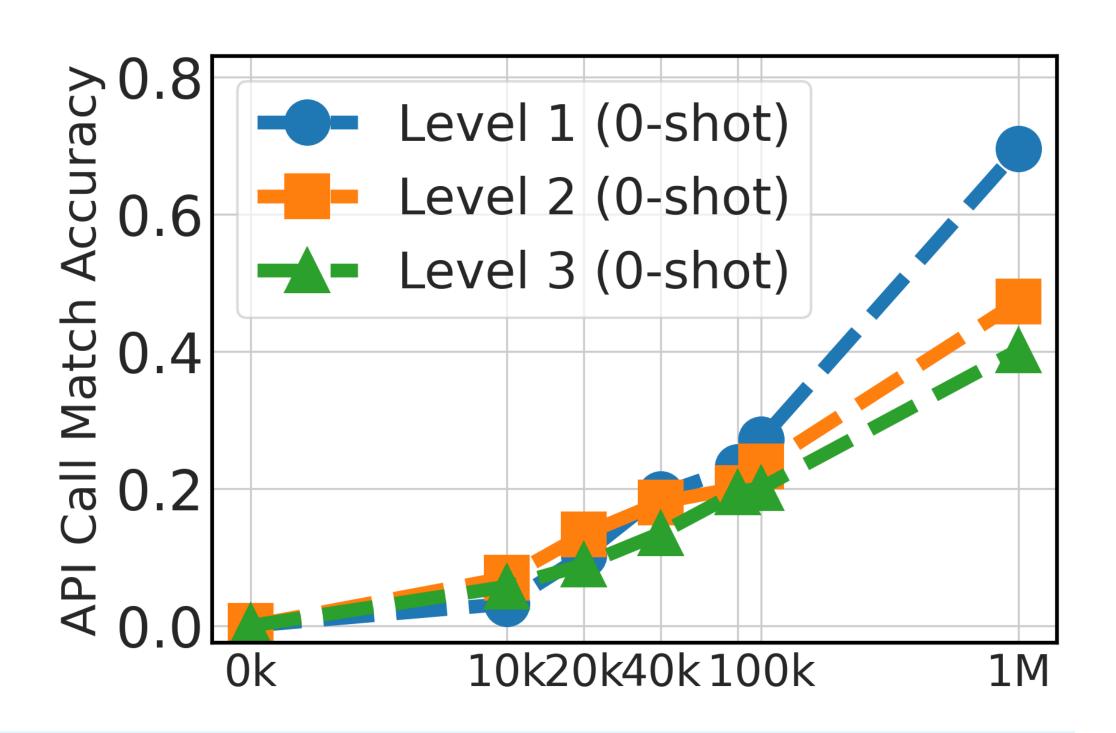
- Fine-tuning
- Cross-language generalization
- Scaling


Finetuning results

Fine-tuning CodeLlama-13B on 20,000 Python API Pack instances outperforms GPT-3.5 by 10% and GPT-4 by 5% on new API calls not seen during training.

			Evaluation Accuracy (%)					
			Scenario 1 Seen APIs and endpoints		Scenario 2 Seen APIs and new endpoints		Scenario 3 New APIs and endpoints	
Model	Fine-tuning	Testing	Intent	API Call	Intent	API Call	Intent	API Call
Mistral-7b	0-shot 3-shot	0-shot 3-shot (retrieval) 0-shot	17.2 42.0 40.5	10.9 29.7 28.5	14.1 35.4 24.0	11.4 28.7 18.3	14.3 39.1 15.2	11.2 29.1 12.1
	3 31101	3-shot (retrieval)	64.1	55.4	49.1	42.8	50.8	42.5
CodeLlama-7b	0-shot	0-shot 3-shot (retrieval)	8.1 52.6	6.1 42.6	10.0 43.6	7.0 35.9	11.0 50.2	7.8 40.1
	3-shot	0-shot 3-shot (retrieval)	12.1 60.6	9.3 52.7	13.7 54.1	10.2 47.3	16.8 55.9	13.0 49.1
Llama-2-13b	0-shot	0-shot 3-shot (retrieval)	9.4 44.5	6.2 33.9	11.6 45.4	9.0 35.6	10.9 46.7	8.4 39.1
	3-shot	0-shot 3-shot (retrieval)	15.7 59.5	10.2 51.5	14.0 50.8	11.2 44.3	11.7 52.7	9.6 44.2
CodeLlama-13b	0-shot	0-shot 3-shot (retrieval)	9.8 55.6	6.8 44.4	10.8 50.6	8.1 43.3	12.1 52.3	8.5 44.1
	3-shot	0-shot 3-shot (retrieval)	14.4 63.5	10.3 55.5	15.9 56.8	13.3 51.4	14.2 56.1	8.9 49.5
	none	0-shot 3-shot (retrieval)	0.1 49.2	0.0 46.2	0.2 36.3	0.0 34.4	0.1 40.7	0.0 38.5
gpt-3.5-1106	none	0-shot 3-shot (retrieval)	-	-	-	-	1.0 47.2	0.7 39.5
gpt-4-1106	none	0-shot 3-shot (retrieval)	-	- -	-	-	0.2 53.5	0.1 44.3

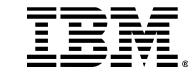

Key findings about cross-language generalization



Cross-language API call generation can be enabled by a large volume of data in one programming language along with smaller amounts of data in others.

Key findings about the scaling experiment

Increasing fine-tuning data from zero to one million instances improves generalization to new APIs, demonstrating the clear benefits of larger datasets for API generalization.


API Pack Limitations and Future Work

Limitations

- API Pack was not designed for scenarios involving multiple API calls, and its instructions require explicit API name specification, which may limit its applicability in complex software development scenarios.
- The API Hubs we sourced data from are all public and operate under a CCO-1.0 license. However, the availability of API-level license information is limited, which may restrict the use of API Pack in proprietary development contexts.

Future Work

- We plan to expand the dataset to support multi-API scenarios.
- We aim to leverage an automatic approach to create synthetic instructions that map natural language to an API call without requiring specification of the API to use.
- We plan to increase programming language diversity.

Thanks

Adriana Meza Soria

Email: adriana.meza.soria@ibm.com

Website: https://ameza13.github.io/adriana-meza-soria/

LinkedIn: adriana-meza-soria-52799961

