

Offline RL with Smooth OOD Generalization in Convex Hull and its Neighborhood

Qingmao Yao, Zhichao Lei, Tianyuan Chen, Ziyue Yuan, Xuefan Chen, Jianxiang Liu, Faguo Wu, Xiao Zhang

ICLR 2025

Outline

Introduction

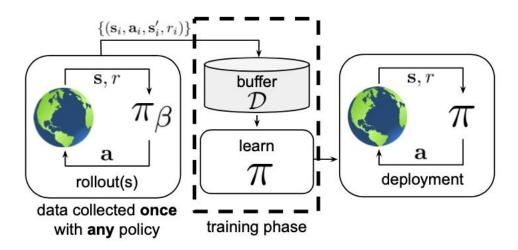
Methods

Experiments

Introduction

Background: Offline Reinforcement Learning

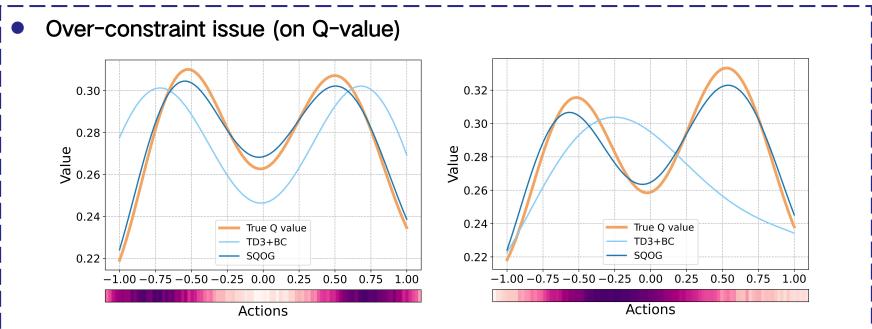
- Offline Reinforcement Learning (RL) learns the optimal policy solely from offline datasets $D = \{(s_i, a_i, r_i, s_i', d_i)\}_{i=1}^N$, $d_i \in \{0, 1\}$
- Key challenges
 - The distribution shift between behavior policy μ (dataset policy) and learned policy π
 - The overestimation issue of out-of-distribution (OOD) actions, leading to suboptimal policy



Introduction

Background: Over-constraint issue in Offline RL

□ Recent solutions are too conservative, introducing an over-constraint issue.



- > TD3+BC: the learned policy is overly close to the behavior policy
- > SQOG (our method): alleviates the over-constraint issue
- Goal: improve Q-value estimation by enhancing Q-function generalization in dataset OOD regions.

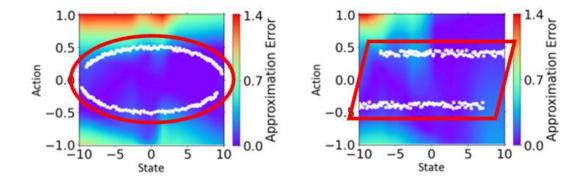
Introduction Contributions

- ✓ Under the safety guarantees of the Convex Hull and its Neighborhood (CHN), we propose the Smooth Bellman Operator (SBO), which enhances Q-function generalization in OOD regions and approximates the true Q-values.
- ✓ Building on SBO, we design an effective algorithm, SQOG, which alleviates the over-constraint issue and obtains SOTA results on D4RL benchmarks.

Methods

Safety guarantees of the generalization within CHN

- Safety guarantee 1: Q-value difference is controlled within CHN
- Previous work (DOGE, 2023) demonstrated that Q-value difference is controlled within the convex hull, we extend this result to the CHN.



Safety guarantee 2: Q-function is uniformly continuous within CHN

These two guarantees ensure safer and more reliable Q-function generalization in OOD regions within CHN!

Methods Smooth Bellman Operator

Definition of SBO

$$\widetilde{\mathcal{B}}^{\pi}Q(s,a) = (\mathcal{G}_1\hat{\mathcal{B}}_2^{\pi})Q(s,a)$$

Base Bellman operator

$$\hat{\mathcal{B}}_2^\pi Q(s,a) = \begin{cases} \hat{\mathcal{B}}^\pi Q(s,a), & \hat{\mu}(a|s) > 0 \\ Q(s,a), & \hat{\mu}(a|s) = 0 \text{ and } (s,a) \in \mathit{CHN} \end{cases}$$
 empirical Bellman operator (CQL, 2020)

Smooth generalization operator

$$\mathcal{G}_1Q(s,a) = \begin{cases} Q(s,a), & \hat{\mu}(a|s) > 0 \\ Q(s,a), & \hat{\mu}(a|s) = 0 \text{ and } (s,a) \in CHN \end{cases}$$

in-sample neighbor action of the OOD action a

OOD action within CHN

Methods Theoretical justification for SBO

- Why $\hat{Q}_{\theta}^{\pi}(s, a_{neighbor}^{in})$ is an appropriate OOD target ?
- Goal: let $\hat{Q}_{\theta}^{\pi}(s, a^{ood})$ (the output of value network) approximate the true OOD Q-value $Q^{\pi}(s, a^{ood})$
- Proposition 3: if $\hat{Q}^{\pi}_{\theta}(s,a^{in}) \approx Q^{\pi}(s,a^{in})$, then

$$||Q^{\pi}(s, a^{ood}) - \hat{Q}^{\pi}_{\theta}(s, a^{in}_{neighbor})|| < \varepsilon$$

- Theorem 1 shows $\hat{Q}^{\pi}_{\theta}(s,a^{in}) \approx Q^{\pi}(s,a^{in})$, when the KL-divergence of learned policy and behavior policy is bound
- $\triangleright \|\hat{\mathcal{B}}^{\pi}Q_{\theta} \mathcal{B}^{\pi}Q_{\theta}\|$ is bound, for all $(s,a) \in \mathcal{D}$
- $\triangleright \hat{Q}^{\pi}_{\theta}(s, a^{in})$ closely approximates $Q^{\pi}_{\theta}(s, a^{in})$
- $ightharpoonup Q_{\theta}^{\pi}(s,a^{in})$ is close to true in-sample Q-value $Q^{\pi}(s,a^{in})$ (PRDC, 2023)
- $\triangleright \hat{Q}^{\pi}_{\theta}(s, a^{in}) \approx Q^{\pi}(s, a^{in})$

Methods Effects of the SBO

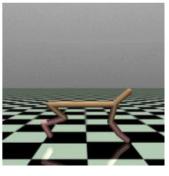
- SBO achieves better Q-value estimation
- For in-sample evaluation, SBO introduces negligible changes to the empirical Bellman operator. (Theorem 2)
- For OOD evaluation, SBO helps mitigate underestimation and overestimation.
 (Theorem 3)
- Based on the SBO, we develop the algorithm SQOG.

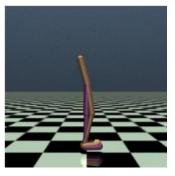
ExperimentsResults on D4RL Benchmarks

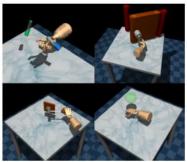
D4RL benchmarks

- D4RL is the most widely used benchmarks in offline RL.
- Gym-Mujoco are the lomocotion tasks (Hopper, Halfcheetah, Walker2d)
- Maze2D is a navigation task requiring a 2D agent to reach a fixed goal location.
- Adroit involves controlling Hand robot tasked with hammering a nail, opening a door, twirling a pen, or picking up and moving a ball.
- Performance Evaluation: Normalized score (100 → expert, 0 → random).

 $normalized \ score = 100* \frac{score - random \ score}{expert \ score - random \ score}$







Halfcheetach

Walker2d

Maze2d

Adroit

Experiments Results on D4RL Benchmarks

SQOG obtains SOTA results on benchmark datasets

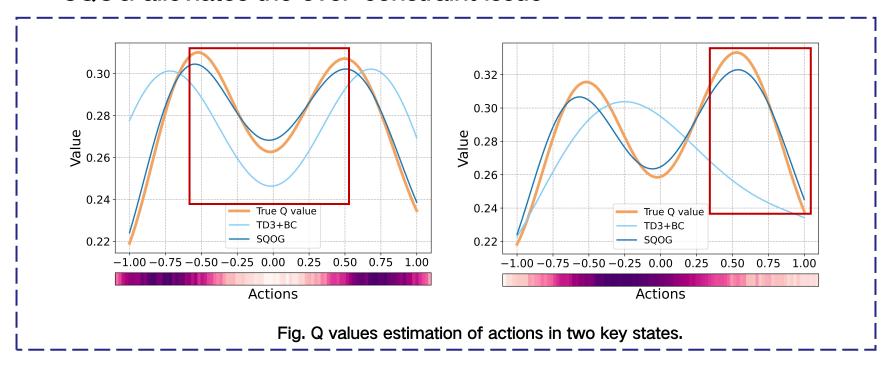
Dataset	BC	TD3+BC	CQL	IQL	DOGE	MCQ	SQOG
halfcheetah-r hopper-r walker2d-r	2.2±0.0 3.7±0.6 1.3±0.1	11.0±1.1 8.5±0.6 1.6±1.7	17.5±1.5 7.9±0.4 5.1±1.3	13.1±1.3 7.9±0.2 5.4±1.2	17.8±1.2 21.1±12.6 0.9±2.4	23.6±0.8 31.0±1.7 10.3±6.8	25.6±0.4 15.6±3.3 17.7±3.5
halfcheetah-m hopper-m walker2d-m	43.2±0.6 54.1±3.8 70.9±11.0	48.3±0.3 59.3±4.2 83.7±2.1	47.0±0.5 53.0±28.5 73.3±17.7	47.4±0.2 66.2±5.7 78.3±8.7	45.3±0.6 98.6±2.1 86.8±0.8	58.3±1.3 73.6±10.3 88.4 ± 1.3	59.2±2.4 100.6±0.7 82.9±0.8
halfcheetah-m-r hopper-m-r walker2d-m-r	37.6±2.1 16.6±4.8 20.3±9.8	44.6±0.5 60.9±18.8 81.8±5.5	45.5±0.7 88.7±12.9 81.8±2.7	44.2±1.2 94.7±8.6 73.8±7.1	42.8±0.6 76.2±17.7 87.3±2.3	51.5±0.2 99.5±1.7 83.3±1.9	46.4±1.2 100.9±5.1 88.3±3.5
halfcheetah-m-e hopper-m-e walker2d-m-e	44.0±1.6 53.9±4.7 90.1±13.2	90.7±4.3 98.0±9.4 110.1±0.5	75.6±25.7 105.6±12.9 107.9±1.6	86.7±5.3 91.5±14.3 109.6±1.0	78.7±8.4 102.7±5.2 110.4 ± 1.5	85.4±3.4 106.1±2.3 110.3±0.1	92.6±0.4 109.2±2.8 109.0±0.3
Mujoco Average	36.5	58.2	61.8	59.9	64.1	68.4	70.7
Maze2d Average	-2.0	35.0	19.6	37.2	2	102.2	124.7
Adroit Total	93.9	0.0	93.6	110.7	-	123.3	149.6
Runtime (h)	0.3	0.4	10.8	0.4	0.9	8.0	0.4

 SQOG consistently attains the highest scores on most datasets (8/12) and achieves the highest average scores (bold) across the Mujoco, Maze2d, and Adroit tasks, with low computational cost.

Experiments

Sanity Check: alleviation of the over-constraint issue

SQOG alleviates the over-constraint issue

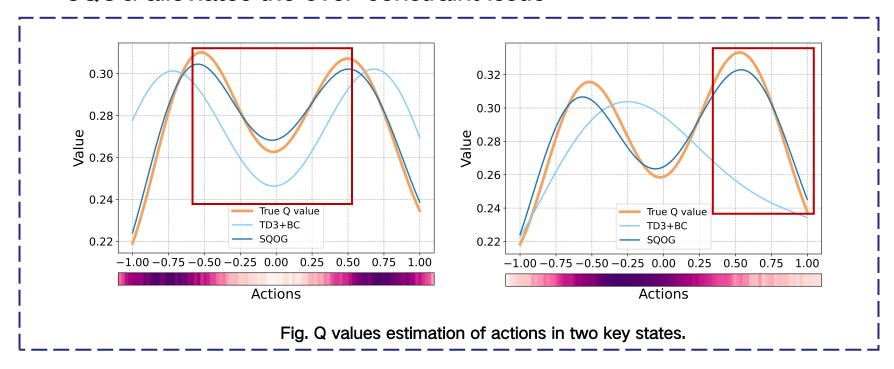


- The highest true value exists in [-0.50, 0.50] (left), which corresponds to OOD regions within the convex hull.
- The highest true value exists in [0.30, 1.00] (right), corresponding to OOD regions in the neighborhood of the convex hull.

Experiments

Sanity Check: alleviation of the over-constraint issue

SQOG alleviates the over-constraint issue



- TD3+BC encounters the over-constraint issue in these OOD regions, failing to leverage implicit OOD information within CHN.
- SQOG accurately estimates Q-values through smooth OOD generalization within the CHN (convex hull and its neighborhood).

ExperimentsGeneralizability of SBO

□ SBO is a versatile plug-in for policy constraint methods.

Dataset	BRAC	BRAC+SBO	
halfcheetah-medium	49.8±1.2	54.3±1.2	
hopper-medium	3.6 ± 3.1	90.9±2.9	
walker2d-medium	7.8 ± 8.1	85.6±4.3	
halfcheetah-medium-replay	41.8 ± 6.2	47.8 ± 2.0	
hopper-medium-replay	28.8 ± 20.3	61.1±11.9	
walker2d-medium-replay	8.5±3.0	67.6±11.0	
Mujoco Average	23.4	67.9	
Improvement	-	190.2%	
pen-human	19.2±16.3	69.7±8.7	
pen-cloned	28.4 ± 23.4	69.0±14.8	
Adroit Average	23.8	69.4	
Improvement	21	191.6%	

- A significant performance improvement when SBO is added to BRAC.
- SBO serves as a valuable complement to policy constraint methods.

Summary and Takeaways

- We present a method that broadly alleviates the over-constraint issue in policy constraint methods, achieving SOTA performance with low computational cost.
- Better Q-value estimation leads to better policy performance.
- Neighboring in-sample Q-values serve as appropriate targets for over-constrained OOD Q-values.

Thank you!