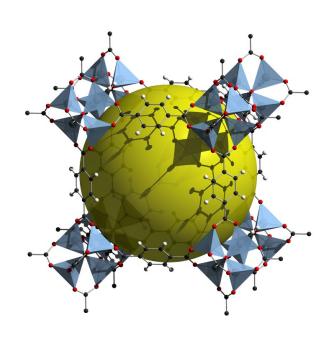
MOFFlow: Flow Matching for Structure Prediction of Metal-Organic Frameworks

2025.04.01

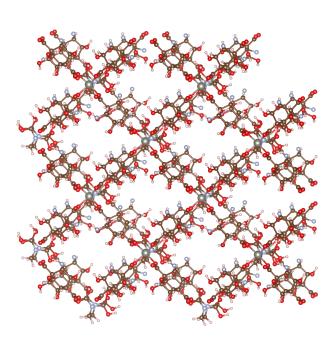
Nayoung Kim, Seongsu Kim, Minsu Kim, Jinkyoo Park, Sungsoo Ahn

What is MOF?

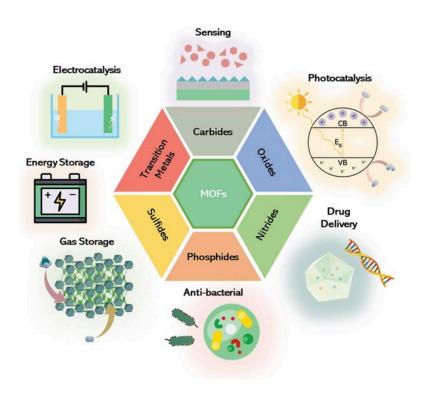
Metal-organic frameworks (MOFs) are **porous**, **crystalline** material with **many applications** – e.g., gas separation, drug delivery, batteries, catalysis, sensing.



An example MOF



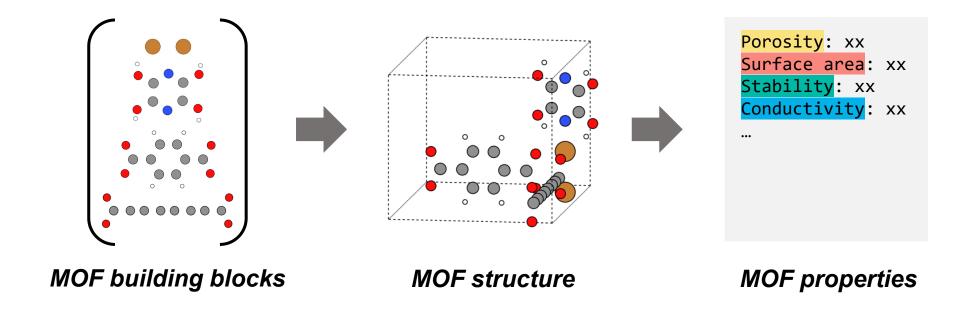
Supercell structure



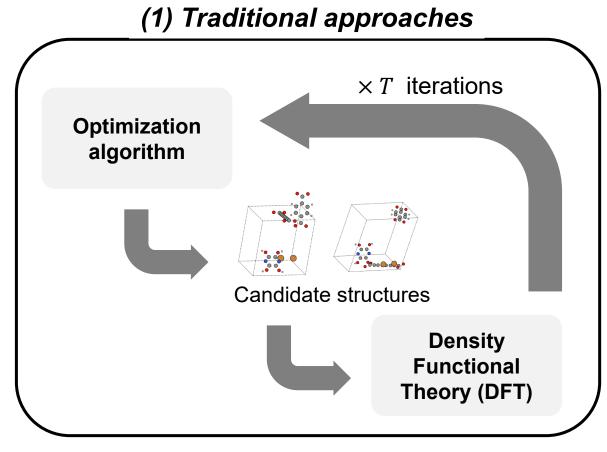
Various applications of MOF

Structure prediction of MOFs

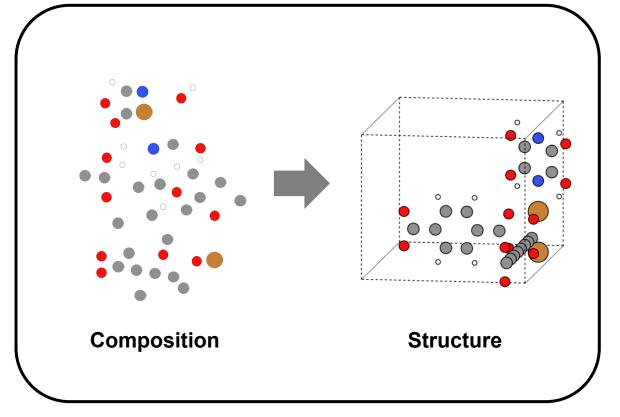
Computational methods for predicting structure of MOFs is useful for directing experimental synt hesis and MOF design.



Previous approaches



(2) General CSP approaches

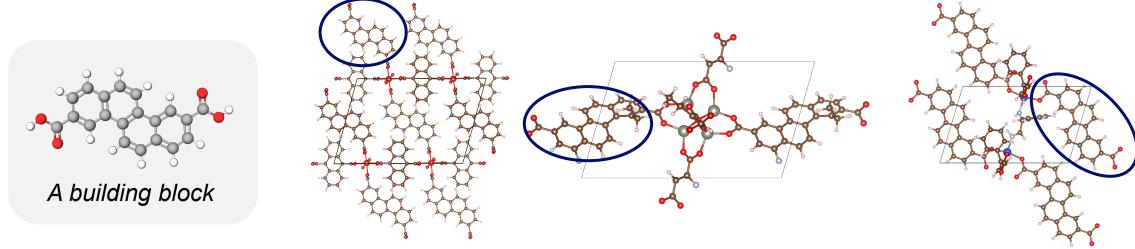


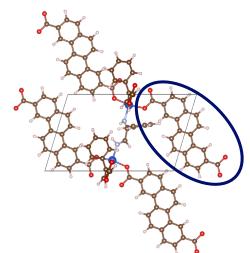
Computationally expensive

Poor performance and scalability

Motivation

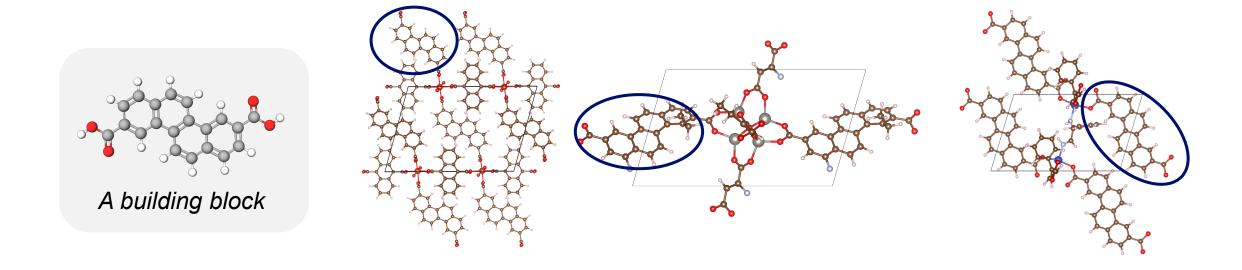
Key observation: Different MOFs share same building blocks with fixed local structures.





Motivation

Key observation: Different MOFs share same building blocks with fixed local structures.

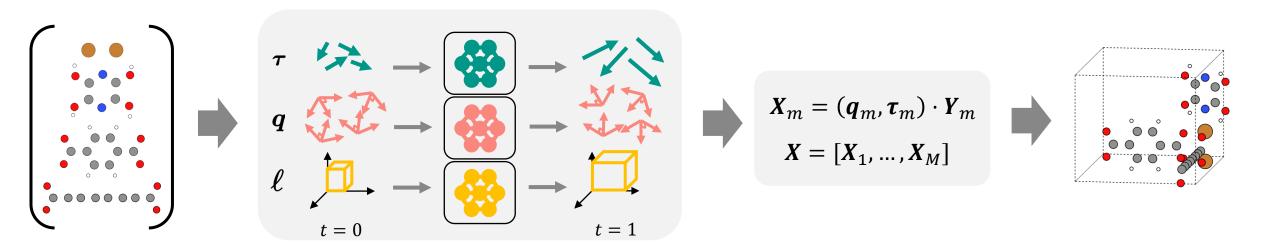


Can we can treat building blocks as *rigid bodies…* and learn to assemble them?

Overview

MOFFlow: First deep generative model for structure prediction of MOFs.

Key idea: Learn rotations q, translations τ , and lattice ℓ for assembling the building blocks into MOF structure... with Riemannian flow matching!



Building blocks

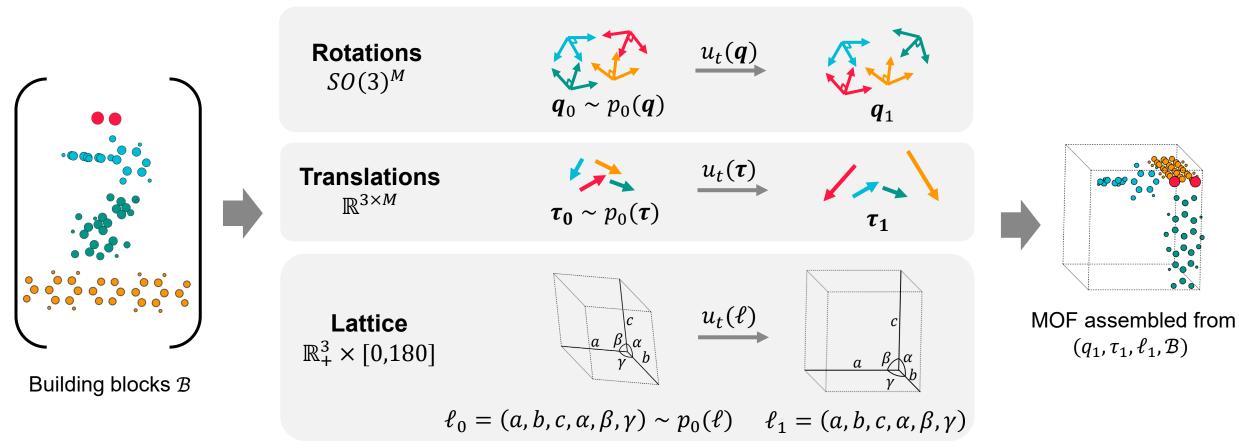
 $\mathcal{C}_m = (a_m, Y_m)$

MOFFLOW

Assembly

MOF structure (X, A, ℓ)

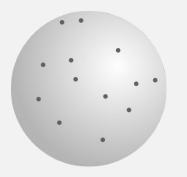
Goal: Learn a vector field u_t that pushes a prior distribution $p_0(q, \tau, \ell)$ to data distribution $p_1(q, \tau, \ell | \mathcal{B})$



Task 1: Define prior distributions $p_0(q)$, $p_0(\tau)$, $p_0(\ell)$

The virtue of FM framework allows us to choose *any* prior distribution^{2,3}!

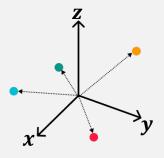
Rotations $SO(3)^M$



$$p_0(q) = \mathcal{U}(SO(3))$$

Uniform distribution on SO(3)

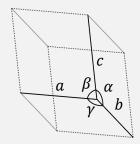
Translations $\mathbb{R}^{3\times M}$



$$p_0(au) = \mathcal{N}_c(0, I_3)$$

Centered Gaussian distribution (for translation invariance)

Lattice $\mathbb{R}^3_+ \times [0,\pi]$



$$p_0(a,b,c) = \prod_{\lambda \in (a,b,c)} ext{LogNormal} \left(\lambda \mid \mu_\lambda, \sigma_\lambda
ight) \ p_0(lpha,eta,\gamma) = \mathcal{U}(60,120)$$

Log normal and uniform distribution (after Niggli reduction)

Task 2: Define (conditional) vector field to regress towards!

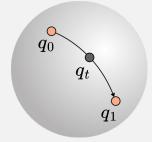
We can define **conditional flows** as a geodesic (shortest path) connecting $x_0 \sim q_0$ and $x_1 \sim q_1$.

We simply take its time-derivative to get conditional vector field4.

Riemannian manifold

Conditional flow

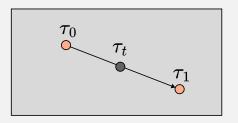
Rotations $SO(3)^M$



$$q_t = \exp_{q_0} (t \log_{q_0} q_1)$$

$$u_t(q_t|q_1) = \frac{\log_{q_t} q_1}{1-t}$$

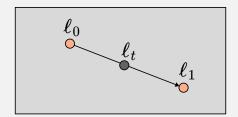
Translations $\mathbb{R}^{3\times M}$



$$\tau_t = (1 - t)\tau_0 + t\tau_1$$

$$u_t(\tau_t|\tau_1) = \frac{\tau_1 - \tau_t}{1 - t}$$

Lattice $\mathbb{R}^3_+ \times [0, \pi]$



$$\ell_t = (1 - t)\ell_0 + t\ell_1$$

$$\ell_1 - \ell_t$$

$$u_t(\ell_t|\ell_1) = \frac{\ell_1 - \ell_t}{1 - t}$$

Parameterization: Instead of directly regressing on conditional vector fields, we parameterize the net work to predict clean data q_1, τ_1, ℓ_1 :

$$u_t(q_t|q_1) = rac{\log_{q_t}(q_1)}{1-t} \qquad \qquad u_t\left(au_t \mid au_1
ight) = rac{(au_1) - au_t}{1-t} \qquad \qquad u_t\left(\ell_t \mid \ell_1
ight) = rac{(\ell_1) - \ell_t}{1-t}$$

$$(\hat{\mathbf{q}}_1,\hat{ au}_1,\hat{\ell}_1) = \mathcal{F}(\mathbf{q}_t, au_t,\ell_t,\mathcal{B}; heta)$$

Prediction of clean data Our neural network!

Objective: Train neural network $(\hat{q}_1, \hat{\tau}_1, \hat{\ell}_1) = \mathcal{F}_{\theta}(q_t, \tau_t, \ell_t; \mathcal{B})$ with

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{\mathcal{S}_1,t} \left[\frac{1}{(1-t)^2} \left(\lambda_1 \left\| \log_{q_t} \hat{q}_1 - \log_{q_t} q_1 \right\|_{SO(3)}^2 + \frac{\lambda_2 \left\| \hat{\tau}_1 - \tau_1 \right\|_{\mathbb{R}^3}^2 + \lambda_3 \left\| \hat{\ell}_1 - \ell_1 \right\|_{\mathbb{R}^3}^2 \right) \right]$$
Rotation
Translation
Lattice

where $S_1 = (q_1, \tau_1, \ell_1, \mathcal{B})$ and $t \sim U(0,1)$.

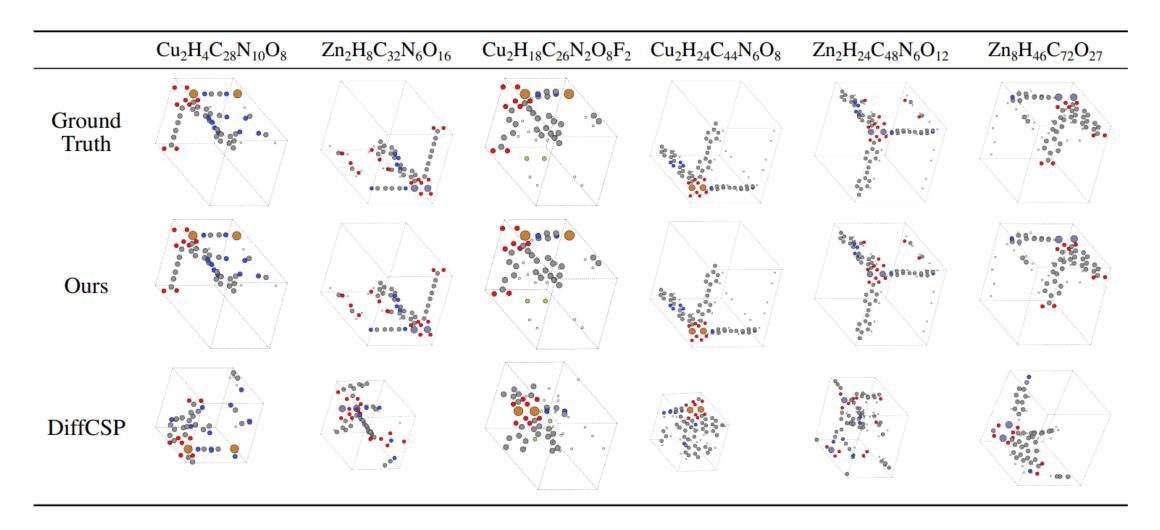
Key questions

- 1. Accuracy: How does the structure prediction accuracy of MOFFlow compare to other methods?
- 2. Scalability: How does the performance of MOFFlow vary with increasing number of atoms and building blocks?

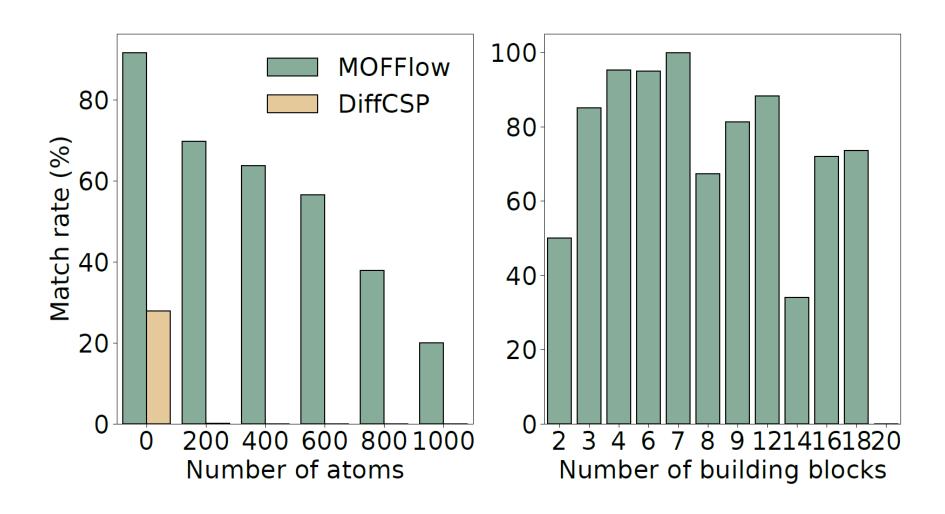
✓ Accuracy: MOFFlow can accurately predict MOF structures

	# of samples	stol = 0.5		stol = 1.0		Avg. time (s) \downarrow
		MR (%) ↑	RMSE ↓	MR (%) ↑	RMSE ↓	11. g. time (5)\$
RS (Yamashita et al., 2021)	20	0.00	-	0.00	-	332
EA (Yamashita et al., 2021)	20	0.00	-	0.00	-	1959
DiffCSP (Jiao et al., 2024a)	1	0.09	0.3961	23.12	0.8294	5.37
	5	0.34	0.3848	38.94	0.7937	26.85
MOFFLOW (Ours)	1	31.69	0.2820	87.46	0.5183	1.94
	5	44.75	0.2694	100.0	0.4645	5.69

✓ Accuracy: MOFFlow can accurately predict MOF structures



✓ Scalability: MOFFlow is scalable to large systems (up to thousands of atoms)



Thank you

