Sequential Controlled Langevin Diffusions

Junhua Chen*,†,1, Lorenz Richter*,2,3, Julius Berner*,†,4, Denis Blessing*,5, Gerhard Neumann⁵, Anima Anandkumar⁶

 $^1 \mbox{University of Cambridge, 2Zuse Institute Berlin, 3dida Datenschmiede GmbH, 4NVIDIA, 5Karlsruhe Institute of Technology, 6California Institute of Technology.}$

* equal contribution

† Work partially done at the California Institute of Technology

Problem Statement

We consider the task of sampling an unnormalized density

$$p_{\mathrm{target}} = rac{
ho_{\mathrm{target}}}{Z} \quad \mathrm{with} \quad Z \coloneqq \int_{\mathbb{R}^d}
ho_{\mathrm{target}}(x) \mathrm{d}x,$$

where $\rho_{\text{target}} \in C(\mathbb{R}^d, \mathbb{R}_{\geq 0})$ and its gradient can be evaluated pointwise, but the normalizing constant Z is unknown.

Sampling from **unnormalized densities** is central in many applications (e.g. Bayesian inference, molecular dynamics).

Prior Work & Motivation

Two popular approaches for Sampling are SMC and Diffusion Sampling:

- Sequential Monte Carlo (SMC): Combines resampling and MCMC.
 - Resampling helps focus computation on promising regions, Robust performance.
 - Slow sampling and requires tuning.
- **Diffusion-based samplers:** Learn a SDE to transport samples from a prior to the target.
 - Training helps samplers adapt to given densities, leading to fixed, short sampling times.
 - Training often time-consuming and unstable.

Our work **Sequential Controlled Langevin Diffusions** (SCLD) aims to **unify the two methods and combine their strengths** during training and sampling time.

Recap: A general recipe for Diffusion Samplers

Key Idea 0 (Vargas et.al '24): Consider the task of learning a forward transport $\vec{\mathbb{P}}^u$ from some tractable prior π_0 to target $\pi_1 = p_{\text{target}}$. We can do this by enforcing the time reversal property between the $\vec{\mathbb{P}}^u$ and some backward process $\vec{\mathbb{P}}^v$ with $\vec{\mathbb{P}}^v_{t=1} = ^d \pi_1$ by minimizing (estimates of) $D(\vec{\mathbb{P}}^u, \vec{\mathbb{P}}^v)$ for a divergence D between their induced path measures.

We can define the forward and backward processes $\vec{\mathbb{P}}^u, \vec{\mathbb{P}}^v$ as diffusion SDEs with drift:

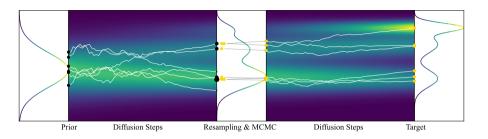
$$\vec{\mathbb{P}}^u: \ \mathrm{d} X^u_t = u(X^u_t,t) \mathrm{d} t + \sigma(t) \vec{\mathrm{d}} W_t, \qquad X^u_0 \sim \pi_0$$

$$\vec{\mathbb{P}}^v: \mathrm{d} Y^v_t = v(Y^v_t,t) \mathrm{d} t + \sigma(t) \vec{\mathrm{d}} W_t, \qquad Y^v_1 \sim \pi_1$$

where u and v are parametrized functions, often constrained to give unique minima. The Radon-Nikodym derivative $\frac{d}{dP}$ is tractable, and so divergences like the KL-divergence

$$\mathbb{E}_{X_{[0,1]} \sim \overrightarrow{\mathbb{P}}}[\log \frac{d}{d}]$$
 or the Log-Variance (LV) divergence $\operatorname{Var}[\log \frac{d}{d}]$ can be used.

Method Overview: SCLD - Sampling



Key Idea 1: The trained Forward and Backward SDEs of a Diffusion Sampler can be readily used as the forward and backward kernels of an SMC sampler in conjunction with a probability annealing schedule $(\pi_t)_{0 \le t \le 1}$.

■ SCLD uses controlled SDEs to evolve particles, and intersperses resampling and MCMC steps at arbitrary times. Can be seen as performing importance sampling on path space.

Method Overview: SCLD - Training

Key Idea 2: Rather than learning a diffusion sampler separately first, the entire SCLD sampling setup can be trained end-to-end by minimizing a *sub-trajectory based divergence*.

For two collections of sub-trajectory path measures $(\vec{\mathbb{P}}_{[t_{n-1},t_n]})_{1\leq n\leq N}$ and $(\vec{\mathbb{P}}_{[t_{n-1},t_n]})_{1\leq n\leq N}$ (where $0=t_0\leq\ldots\leq t_N=1$) we can define a *sub-trajectory* divergence by

$$\mathcal{L} = \sum_{n=1}^{N} D\left(\vec{\mathbb{P}}_{[t_{n-1},t_n]}, \dot{\tilde{\mathbb{P}}}_{[t_{n-1},t_n]}\right),$$

- We considered both $D = D_{KL}$ and $D = D_{LV}$, and found that D_{LV} was both better in theory and in practice and use it going forward. Other divergences possible.
- We also adopt multiple algorithmic improvements such as *Replay Buffers* and *Learned Annealing Schedules*. There is room for further improvement in our design choices.

Experimental Results - Quantitative

SCLD consistently delivers strong performance across our set of benchmark tasks.

Table: Comparison of different methods in terms of ELBOs, i.e., lower bounds on the log-normalization constant $\log Z$.

ELBO (↑)	Seeds (26d)	Sonar (61d)	Credit (25d)	Brownian (32d)	LGCP (1600d)
SMC	$-74.63_{\pm 0.14}$	$-111.50_{\pm 0.96}$	$-589.82_{\pm 5.72}$	$-2.21_{\pm 0.53}$	385.75±7.65
SMC-ESS	$-74.07{\scriptstyle \pm 0.60}$	$-109.10{\scriptstyle \pm 0.17}$	$-505.57{\scriptstyle \pm 0.18}$	$0.49{\scriptstyle \pm 0.19}$	497.85±0.11
SMC-FC	$-74.07_{\pm 0.02}$	$-108.93 \scriptstyle{\pm 0.02}$	$-505.30{\scriptstyle \pm 0.02}$	$-1.91_{\pm 0.04}$	$-878.10_{\pm 2.20}$
CRAFT	$-73.75{\scriptstyle \pm 0.02}$	$-108.97 \scriptstyle{\pm 0.16}$	$-518.25{\scriptstyle \pm 0.52}$	$0.90{\scriptstyle \pm 0.10}$	485.87 ± 0.37
DDS	$-75.21_{\pm 0.21}$	$-121.22_{\pm 5.99}$	$-514.74{\scriptstyle \pm 1.22}$	$0.56 \scriptstyle{\pm 0.23}$	NA
PIS	$-88.92_{\pm 2.05}$	$-142.87_{\pm 3.29}$	$-846.57{\scriptstyle \pm 2.42}$	NA	479.54 ± 0.40
CMCD-KL	$-73.51_{\pm 0.01}$	$-109.09{\scriptstyle \pm 0.01}$	$-507.23{\scriptstyle \pm 6.40}$	$0.86 \scriptstyle{\pm 0.01}$	$478.75{\scriptstyle \pm 0.34}$
CMCD-LV	$-73.67_{\pm 0.01}$	$-109.50{\scriptstyle \pm 0.03}$	$-504.90{\scriptstyle \pm 0.02}$	0.54 ± 0.03	$472.79 \scriptstyle{\pm 0.44}$
SCLD (ours)	$-73.45_{\pm 0.01}$	$-108.17_{\pm 0.25}$	$-504.46_{\pm0.09}$	1.00±0.18	$486.77{\scriptstyle\pm0.70}$

Table: Comparison of different methods in terms of Sinkhorn distances to groundtruth samples, when available

Sinkhorn (↓)	Funnel (10d)	MW54 (5d)	Robot1 (10d)	Robot4 (10d)	GMM40 (50d)	MoS (50d)
SMC	149.35±4.73	20.71±5.33	24.02±1.06	24.08±0.26	46370.34±137.79	3297.28±2184.54
SMC-ESS	117.48±9.70	$1.11{\scriptstyle\pm0.15}$	1.82 ± 0.50	$2.11_{\pm 0.31}$	24240.68±50.52	1477.04 ± 133.80
SMC-FC	211.43±30.08	$2.03_{\pm 0.17}$	$0.37_{\pm 0.08}$	$1.23_{\pm 0.02}$	$39018.27 {\scriptstyle \pm 159.32}$	3200.10 ± 95.35
CRAFT	133.42 ± 1.04	$11.47_{\pm 0.90}$	$2.92_{\pm 0.01}$	$4.14_{\pm 0.50}$	28960.70±354.89	$1918.14{\scriptstyle\pm108.22}$
DDS	142.89 ± 9.55	$0.63_{\pm 0.24}$	$11.44_{\pm 12.50}$	$5.38_{\pm 2.44}$	$5435.18{\scriptstyle\pm172.20}$	2154.88±3.86
PIS	NA	$0.42_{\pm 0.01}$	$1.54_{\pm 0.72}$	2.02 ± 0.36	10405.75 ± 69.41	$2113.17{\scriptstyle \pm 31.17}$
CMCD-KL	124.89 ± 8.95	0.57 ± 0.05	$3.71_{\pm 1.00}$	$2.62_{\pm 0.41}$	22132.28±595.18	$1848.89 \scriptstyle{\pm 532.56}$
CMCD-LV	139.07 ± 9.35	$0.51_{\pm 0.08}$	$28.49_{\pm 0.07}$	$27.00_{\pm 0.07}$	$4258.57 \scriptstyle{\pm 737.15}$	$1945.71_{\pm 48.79}$
SCLD (ours)	134.23 ± 8.39	$0.44_{\pm 0.06}$	0.31±0.04	0.40±0.01	3787.73±249.75	656.10±88.97

Experimental Results - Qualitative

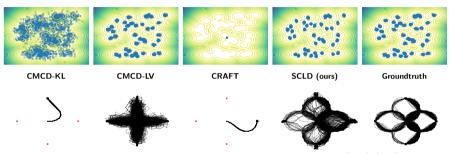


Figure: Samples from our considered methods and the groundtruth for the GMM40 (50d) (top) and Robot4 (10d) (bottom) tasks. Our SCLD method accurately finds all modes and avoids low probablity regions.

Experimental Results - Efficiency

SCLD leverages the robustness of SMC (resampling/MCMC) and the flexibility of learned diffusions, facilitating speedup in convergence and up to a $10\times$ decrease in training time to attain performance of prior samplers.

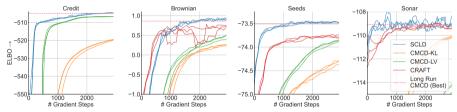


Figure: ELBOs during training for several tasks. We visualize the ELBO estimates attained by 4 methods as training progresses, running 3 seeds for each task. We mark the long run CMCD ELBOs (best out of KL and LV loss), corresponding to running for 40000 gradient steps.

Conclusion & Future Work

Our Contributions:

- A framework for merging SMC and diffusion-based sampling.
- Resulting improvements in convergence speed and sample quality.

Thank you for your attention!

Paper: arxiv.org/abs/2412.07081

Code: github.com/anonymous3141/SCLD/

junhua.chen.ios@gmail.com lorenz.richter@gmail.com mail@jberner.info denis.blessing@kit.edu