

Overcoming Lower-Level Constraints in Bilevel Optimization: A Novel Approach with Regularized Gap Functions

Wei Yao, Haian Yin, Shangzhi Zeng, Jin Zhang

Problem Formulation

The **constrained** bilevel optimization (BiO) is formulated as:

$$\min_{x \in X, y \in Y} F(x,y) \quad \text{s.t.} \quad y \in S(x) := \operatorname*{argmin}_{y \in Y} \Big\{ \, f(x,y) \, \text{ s.t. } g(x,y) \leq 0 \Big\},$$

which tackles nested structures present in constrained learning tasks like constrained meta-learning, adversarial learning, and distributed bilevel optimization.

Assumptions:

- \triangleright F is **Smooth** and **bounded below** over the feasible set.
- \triangleright f is **Convex** in y, and **smooth** in both variables.
- $\triangleright g$ is Convex in y, smooth, and Lipschitz continuous (including its gradients).

Goal: develop a single-loop, first-order algorithm without projection onto the coupled lower-level constraint set.

Gap Function and Its Property

Here we introduce the doubly regularized gap function for the lower-level problem:

$$\mathcal{G}_{\gamma}(x,y,z) := \max_{\theta \in Y, \lambda \in \mathbb{R}_{+}^{p}} \left\{ \mathcal{L}(x,y,\lambda) - \frac{1}{2\gamma_{2}} \|\lambda - z\|^{2} - \mathcal{L}(x,\theta,z) - \frac{1}{2\gamma_{1}} \|\theta - y\|^{2} \right\},$$

where the Lagrangian function $\mathcal{L}(x,y,z) := f(x,y) + z^{\mathrm{T}}g(x,y)$.

Property I (Lemma 2.1.)

$$\mathcal{G}_{\gamma}(x,y,z) \leq 0 \Leftrightarrow y \in S(x) \text{ and } z \in \mathcal{M}(x,y)$$

Property II (Lemma 2.2.)

$$\nabla \mathcal{G}_{\gamma}(x,y,z) = \begin{bmatrix} \nabla_{x} f(x,y) + (\lambda^{*})^{\mathrm{T}} \nabla_{x} g(x,y) \\ \nabla_{y} f(x,y) + (\lambda^{*})^{\mathrm{T}} \nabla_{y} g(x,y) \\ -(z-\lambda^{*})/\gamma_{2} \end{bmatrix} - \begin{bmatrix} \nabla_{x} f(x,\theta^{*}) + z^{\mathrm{T}} \nabla_{x} g(x,\theta^{*}) \\ (y-\theta^{*})/\gamma_{1} \\ g(x,\theta^{*}) \end{bmatrix}$$

$$\theta^* := \theta^*(x, y, z) := \underset{\theta \in Y}{\operatorname{argmin}} \left\{ \mathcal{L}(x, \theta, z) + \frac{1}{2\gamma_1} \|\theta - y\|^2 \right\},\,$$

$$\lambda^* := \lambda^*(x, y, z) := \underset{\lambda \in \mathbb{R}_+^p}{\operatorname{argmax}} \left\{ \mathcal{L}(x, y, z) - \frac{1}{2\gamma_2} \|\lambda - z\|^2 \right\} = \operatorname{Proj}_{\mathbb{R}_+^p} \left(z + \gamma_2 g(x, y) \right).$$

Reformulation

Based on the Property I of gap function, we can reformulate the BiO equivalently as

$$\min_{(x,y,z)\in X\times Y\times \mathbb{R}^p_+} F(x,y) \quad \text{s.t.} \quad \mathcal{G}_{\gamma}(x,y,z) \leq 0.$$

To develop a gradient-based algorithm, we explore its **penalty** formulation:

$$\min_{(x,y,z)\in X\times Y\times Z} F(x,y) + c \mathcal{G}_{\gamma}(x,y,z),$$

Main Algorithm

- ➤ Bilevel Constrained GAp Function-based First-order Algorithm (BiC-GAFFA)
 - 1. Update Auxiliary Variables:

$$\theta^{k+1} = \operatorname{Proj}_{Y} \left(\theta^{k} - \eta_{k} \nabla_{\theta} \left(\mathcal{L}(x^{k}, \theta^{k}, z^{k}) + \frac{1}{2\gamma_{1}} \|\theta^{k} - y^{k}\|^{2} \right) \right)$$
$$\lambda^{k+1} = \operatorname{Proj}_{\mathbb{R}^{p}_{+}} \left(z^{k} + \gamma_{2} g(x^{k}, y^{k}) \right)$$

2. Update Main Variables:

$$(x^{k+1}, y^{k+1}, z^{k+1})$$

$$= \operatorname{Proj}_{X \times Y \times Z} \left((x^k, y^k, z^k) - \alpha_k \nabla \left(\frac{1}{c_k} F(x^k, y^k) + \mathcal{G}_{\gamma}(x^k, y^k, z^k) \right) \right)$$

Extension to Bilevel Optimization with Minimax Lower-level Problem

For bilevel optimization with minimax lower-level problem:

$$\min_{x \in X, y \in Y, z \in Z} F(x, y, z) \quad \text{s.t.} \quad (y, z) \in \mathcal{SP}(x) := \text{Sol} \left[\min_{y \in Y} \max_{z \in Z} f(x, y, z) \right].$$

We use following gap function:

$$\mathcal{G}_{\gamma}^{\text{saddle}}(x,y,z) := \max_{\theta \in Y, \lambda \in \mathbb{R}_{+}^{p}} \Big\{ f(x,y,z) - \frac{1}{2\gamma_{2}} \|\lambda - z\|^{2} - f(x,\theta,z) - \frac{1}{2\gamma_{1}} \|\theta - y\|^{2} \Big\}.$$

And reformulate the BiO as:

$$\min_{(x,y,z)\in X\times Y\times \mathbb{R}^p_+} F(x,y,z) \quad \text{s.t.} \quad \mathcal{G}^{\text{saddle}}_{\gamma}(x,y,z) \leq 0.$$

- > Single-loop Hessian-free algorithm for BiO with minimax lower-level problem
 - 1. Update Auxiliary Variables:

$$\theta^{k+1} = \operatorname{Proj}_{Y} \left(\theta^{k} - \eta_{k} \nabla_{\theta} \left(\mathcal{L}(x^{k}, \theta^{k}, z^{k}) + \frac{1}{2\gamma_{1}} \|\theta^{k} - y^{k}\|^{2} \right) \right)$$
$$\lambda^{k+1} = \operatorname{Proj}_{\mathbb{R}^{p}_{+}} \left(z^{k} + \gamma_{2} g(x^{k}, y^{k}) \right)$$

2. Update Main Variables:

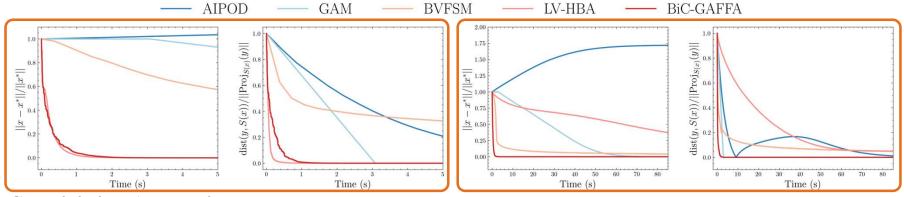
$$(x^{\hat{k}+1}, y^{k+1}, z^{k+1})$$

$$=\operatorname{Proj}_{X\times Y\times Z}\left((x^k,y^k,z^k)-\alpha_k\nabla\left(\frac{1}{c_k}F(x^k,y^k)+\tilde{\mathcal{G}}_{\gamma}^{\operatorname{saddle}}(x^k,y^k,z^k)\right)\right)$$

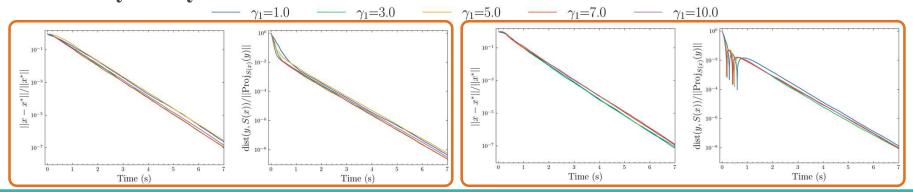
Synthetic Experiments

$$\min_{\substack{\mathbf{x} \in \mathcal{X}, \\ (\mathbf{y}_1, \mathbf{y}_2) \in \mathcal{Y}}} (\mathbf{y}_1 - 2 \cdot \mathbb{1}_n)^{\mathrm{T}} (\mathbf{x} - \mathbb{1}_n) + \|\mathbf{y}_2 + 3 \cdot \mathbb{1}_n\|^2 \qquad \qquad \textcircled{1} \quad h(x) = x \\
\text{s.t.} \quad (\mathbf{y}_1, \mathbf{y}_2) \in \operatorname*{argmin}_{(\mathbf{y}_1, \mathbf{y}_2) \in \mathcal{Y}} \left\{ \frac{1}{2} \|\mathbf{y}_1\|^2 - \mathbf{x}^{\mathrm{T}} \mathbf{y}_1 + \mathbb{1}_n^{\mathrm{T}} \mathbf{y}_2 \text{ s.t.} \right. \sum_{i=1}^n h(\mathbf{x}_i) + \mathbb{1}_n^{\mathrm{T}} \mathbf{y}_1 + \mathbb{1}_n^{\mathrm{T}} \mathbf{y}_2 = 0 \right\}.$$

Performance (Compared with the SOTA Algorithms)



Sensitivity Analysis on Parameters



Hyperparameter Optimization on Sparse Group Lasso Problem

Method	nTr = 100, nVal = 100, nTest = 300			nTr = 300, nVal = 300, nTest = 300		
	Time (s)	Val Err	Test Err	Time (s)	Val Err	Test Err
Grid	17.3 ± 0.9	35.9 ± 7.2	37.7 ± 6.7	78.7 ± 1.9	18.9 ± 2.3	19.8 ± 1.8
Random	17.4 ± 0.7	33.6 ± 6.7	35.7 ± 6.2	78.6 ± 2.5	18.7 ± 2.4	19.5 ± 1.9
TPE	16.9 ± 0.7	33.9 ± 7.0	36.0 ± 5.6	74.7 ± 2.2	18.9 ± 2.3	19.8 ± 1.9
IGJO	21.2 ± 2.2	19.7 ± 2.8	25.6 ± 4.4	49.9 ± 2.6	16.5 ± 2.5	18.1 ± 1.4
VF- $iDCA$	12.4 ± 0.5	14.6 ± 2.6	25.4 ± 3.9	40.7 ± 1.7	14.9 ± 2.1	17.2 ± 1.3
BiC-GAFFA	21.4 ± 0.7	7.3 ± 1.3	22.3 ± 3.0	22.0 ± 1.0	12.8 ± 1.4	17.1 ± 1.3

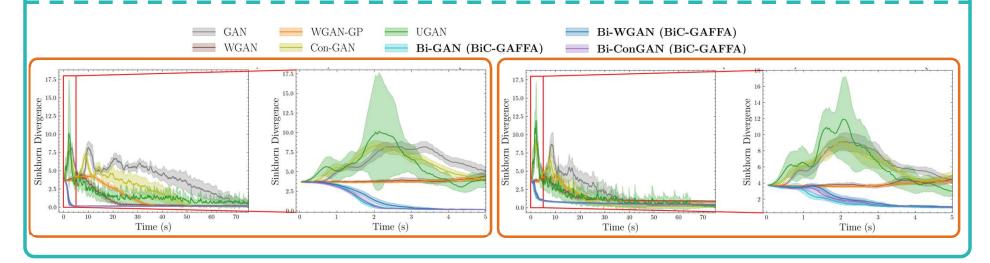
GAN with or with out Constraint

Model: $\min_{G,D} \mathcal{L}_{gen}(G,D)$ s.t. $D \in \underset{D \in \mathcal{D}}{\operatorname{argmin}} \mathcal{L}_{det}(G,D)$.

WGAN:
$$\mathcal{L}_{\text{gen}}(G, D) = -\mathbb{E}_{\mathbf{z} \sim \mathbb{N}}[D(G(\mathbf{z})],$$

$$\mathcal{L}_{\text{det}}(G, D) = -\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_r}[D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim \mathbb{N}}[D(G(\mathbf{z})],$$

$$\mathcal{D} := \left\{ D(\mathbf{x}) \quad \text{s.t.} \quad \max_{\hat{\mathbf{x}} \in \mathbb{P}_{\hat{\mathbf{x}}}} \|\nabla D(\hat{\mathbf{x}})\|_2 \le 1 \right\}.$$



Thanks

Overcoming Lower-Level Constraints in Bilevel Optimization:

A Novel Approach with Regularized Gap Functions

on Learning Representations

Problem Formulation

The constrained bilevel optimization (BiO) is formulated as:

$$\min_{x \in X, y \in Y} \ F(x,y) \quad \text{s.t.} \quad y \in S(x) := \operatorname*{argmin}_{y \in Y} \Big\{ \ f(x,y) \ \text{s.t.} \ g(x,y) \leq 0 \Big\},$$

which tackles nested structures present in constrained learning tasks like constrained meta-learning, adversarial learning, and distributed bilevel optimization.

- > F is Smooth and bounded below over the feasible set.
- > f is Convex in y, and smooth in both variables.
- > g is Convex in y, smooth, and Lipschitz continuous (including its gradients).

Goal: develop a single-loop, first-order algorithm without projection onto the coupled lower-level constraint set.

Gap Function and Its Proper

Here we introduce the doubly regularized gap function for the lower-level problem:

 $\mathcal{G}_{\gamma}(x,y,z) := \max_{\theta \in Y, \lambda \in \mathbb{R}^{p}_{+}} \Big\{ \mathcal{L}(x,y,\lambda) - \frac{1}{2\gamma_{2}} \|\lambda - z\|^{2} - \mathcal{L}(x,\theta,z) - \frac{1}{2\gamma_{1}} \|\theta - y\|^{2} \Big\},$ where the Lagrangian function $\mathcal{L}(x, y, z) := f(x, y) + z^{T}g(x, y)$.

Property I (Lemma 2.1.)

 $G_{\gamma}(x, y, z) \le 0 \Leftrightarrow y \in S(x) \text{ and } z \in M(x, y)$

 $\nabla \mathcal{G}_{\gamma}(x,y,z) = \begin{bmatrix} \nabla_{x} f(x,y) + (\lambda^{*})^{\mathrm{T}} \nabla_{x} g(x,y) \\ \nabla_{y} f(x,y) + (\lambda^{*})^{\mathrm{T}} \nabla_{y} g(x,y) \\ - (z - \lambda^{*}) / \gamma_{2} \end{bmatrix}$ $(y - \theta^*)/\gamma_1$ $g(x, \theta^*)$

 $\theta^* := \theta^*(x, y, z) := \underset{\theta \in V}{\operatorname{argmin}} \left\{ \mathcal{L}(x, \theta, z) + \frac{1}{2\gamma_1} \|\theta - y\|^2 \right\}$

 $\lambda^* := \lambda^*(x,y,z) := \!\!\!\! \underset{\lambda \in \mathbb{R}^p}{\operatorname{argmax}} \left\{ \mathcal{L}(x,y,z) - \frac{1}{2\gamma_2} \|\lambda - z\|^2 \right\} = \operatorname{Proj}_{\mathbb{R}^p_+} \left(z + \gamma_2 g(x,y) \right)$

Based on the Property I of gap function, we can reformulate the BiO equivalently as

$$\min_{x \in \mathcal{F}} F(x, y)$$
 s.t. $\mathcal{G}_{\gamma}(x, y, z) \leq 0$

 $\min_{\substack{(x,y,z) \in X \times Y \times \mathbb{R}_+^p \\ }} F(x,y) \quad \text{s.t.} \quad \mathcal{G}_\gamma(x,y,z) \leq 0.$ To develop a gradient-based algorithm, we explore its penalty formulation:

 $\min_{(x,y,z)\in X\times Y\times Z} F(x,y) + c \mathcal{G}_{\gamma}(x,y,z),$

➤ Bilevel Constrained GAp Function-based First-order Algorithm (BiC-GAFFA) Update Auxiliary Variables:

$$\theta^{k+1} = \operatorname{Proj}_{Y} \left(\theta^{k} - \eta_{k} \nabla_{\theta} \left(\mathcal{L}(x^{k}, \theta^{k}, z^{k}) + \frac{1}{2\gamma_{i}} ||\theta^{k} - y^{k}||^{2} \right) \right)$$

$$\lambda^{k+1} = \operatorname{Proj}_{\mathbb{R}_{+}^{p}} (z^{k} + \gamma_{2}g(x^{k}, y^{k}))$$

$$(x^{k+1}, y^{k+1}, z^{k+1})$$

=
$$\operatorname{Proj}_{X \times Y \times Z} \left((x^k, y^k, z^k) - \alpha_k \nabla \left(\frac{1}{c_k} F(x^k, y^k) + \mathcal{G}_{\gamma}(x^k, y^k, z^k) \right) \right)$$

Extension to Bilevel Optimization with Minimax Lower-level Problem

For bilevel optimization with minimax lower-level problem:

 $\min_{x \in X, y \in Y, z \in Z} \ F(x, y, z) \quad \text{s.t.} \quad (y, z) \in \mathcal{SP}(x) := \text{Sol} \Big[\min_{x \in Y} \max_{x \in Y} \ f(x, y, z) \Big].$ We use following gap function:

 $\mathcal{G}_{\gamma}^{\mathrm{saddle}}(x,y,z) := \max_{\theta \in Y, \lambda \in \mathbb{R}_{+}^{p}} \left\{ f(x,y,z) - \frac{1}{2\gamma_{2}} \|\lambda - z\|^{2} - f(x,\theta,z) - \frac{1}{2\gamma_{1}} \|\theta - y\|^{2} \right\}$ And reformulate the BiO as:

$$\min_{(x,y,z)\in X\times Y\times \mathbb{R}_+^p} F(x,y,z) \quad \text{s.t.} \quad \mathcal{G}_{\gamma}^{\text{saddle}}(x,y,z) \leq 0.$$

Single-loop Hessian-free algorithm for BiO with minimax lower-level problem 1. Update Auxiliary Variables:

$$\theta^{k+1} = \operatorname{Proj}_Y \left(\theta^k - \eta_k \nabla_{\theta} \left(\mathcal{L}(x^k, \theta^k, z^k) + \frac{1}{2\gamma_0} \|\theta^k - y^k\|^2 \right) \right)$$

$$\lambda^{k+1} = \operatorname{Proj}_{\mathbb{R}^p_+} (z^k + \gamma_2 g(x^k, y^k))$$

$$(x^{k+1}, y^{k+1}, z^{k+1})$$

$$= \operatorname{Proj}_{X \times Y \times Z} \left((x^k, y^k, z^k) - \alpha_k \nabla \left(\frac{1}{c_k} F(x^k, y^k) + \tilde{\mathcal{G}}_{\gamma}^{\operatorname{saddle}}(x^k, y^k, z^k) \right) \right)$$

Synthetic Experiment

— AIPOD — GAM — BV	FSM — LV-HBA — BiC-GAFFA
	7
6-	1 d
200	
Free cl	The isl

$\min_{\beta \in \mathbb{R}^p, \lambda \in \mathbb{R}^r}$ s.t.	$\lim_{t \to 0} \frac{1}{2} \sum_{i \in I_{val}} l $		ı. åT. 12	M wâi	(m) u . V	ıı âıı]
$\min_{\mathbb{R}^{R}, \mathbf{u} \in \mathbb{R}^{M+1}} \frac{1}{2}$		$ \mathbf{a}_i ^2$	$ b_i - \hat{\beta}^T \mathbf{a}_i ^2$ $ \mathbf{a}_i ^2 \text{ s.t. } \ \hat{\beta}$	E	Ayperparame	ter
	β∈Rr (²	$i \in I_{tr}$				
		$i \in I_{tr}$ nVal = 100,			nVal = 300,	
Method						
	nTr = 100,	nVal = 100,	nTest = 300	nTr = 300,	nVal = 300,	nTest = 300
Method	$\frac{\text{nTr} = 100,}{\text{Time (s)}}$	nVal = 100, Val Err	nTest = 300 Test Err	$\frac{\text{nTr} = 300,}{\text{Time (s)}}$	nVal = 300, Val Err	nTest = 30
Method Grid	$\frac{\text{nTr} = 100,}{\text{Time (s)}}$ 17.3 ± 0.9	$nVal = 100,$ $Val Err$ 35.9 ± 7.2	$ nTest = 300 $ $ Test Err $ $ 37.7 \pm 6.7 $	$\frac{\text{nTr} = 300,}{\text{Time (s)}}$ 78.7 ± 1.9	$nVal = 300,$ $Val Err$ 18.9 ± 2.3	$nTest = 300$ $Test Err$ 19.8 ± 1.8
Method Grid Random	$\frac{\text{nTr} = 100,}{\text{Time (s)}}$ 17.3 ± 0.9 17.4 ± 0.7	$nVal = 100,$ $Val Err$ 35.9 ± 7.2 33.6 ± 6.7	nTest = 300 Test Err 37.7 ± 6.7 35.7 ± 6.2	$\frac{\text{nTr} = 300,}{\text{Time (s)}}$ 78.7 ± 1.9 78.6 ± 2.5	nVal = 300, Val Err 18.9 ± 2.3 18.7 ± 2.4	Test Err 19.8 ± 1.8 19.5 ± 1.9
Method Grid Random TPE	$\begin{aligned} & \text{nTr} = 100, \\ & \overline{\text{Time (s)}} \\ & 17.3 \pm 0.9 \\ & 17.4 \pm 0.7 \\ & 16.9 \pm 0.7 \end{aligned}$	nVal = 100, Val Err 35.9 ± 7.2 33.6 ± 6.7 33.9 ± 7.0	nTest = 300 Test Err 37.7 ± 6.7 35.7 ± 6.2 36.0 ± 5.6	nTr = 300, Time (s) 78.7 ± 1.9 78.6 ± 2.5 74.7 ± 2.2	nVal = 300, Val Err 18.9 ± 2.3 18.7 ± 2.4 18.9 ± 2.3	Test = 300 Test Err 19.8 ± 1.8 19.5 ± 1.9 19.8 ± 1.9

Hyper-Cleaning on SVM $\min_{\mathbf{c}, \mathbf{w}, b, \boldsymbol{\xi}} \ \operatorname{Logistic}_{\mathcal{D}_{\operatorname{val}}}(\mathbf{w}, b) \ \text{ s.t. } (\mathbf{w}, b, \boldsymbol{\xi}) \in \overline{\operatorname{SVM}_{\mathcal{D}_{\operatorname{tr}}}(\mathbf{w}, b, \boldsymbol{\xi}; \mathbf{c})}$

 $\min_{G,D} \ \mathcal{L}_{\text{gen}}(G,D) \quad \text{s.t.} \quad D \in \operatorname*{argmin}_{D \in \mathcal{D}} \mathcal{L}_{\text{det}}(G,D).$

