

Feedback Favors the Generalization of Neural ODEs

Oral Presentation

Jindou Jia*, Zihan Yang*, Meng Wang, Kexin Guo, Jianfei Yang, Xiang Yu, Lei Guo

Beihang University
Nanyang Technological University

1. Motivation

Generalization problem hinders the application of NN-based methods!

Predominant solution

Large training dataset

Large model

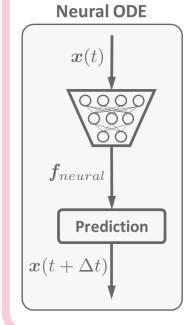
Large training time

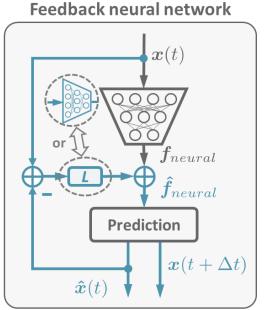
Continuous-time tasks, like robots...

- □ Domain randomization^[1] All Need Large
 Randomize *sim* parameters; Resources!

 Trade precise for robust, similar to *robust control*^[3].
- Domain adaptation^[2]
 Identify uncertainty and adjust decision;
 Maintain precise, similar to adaptive control^[3].

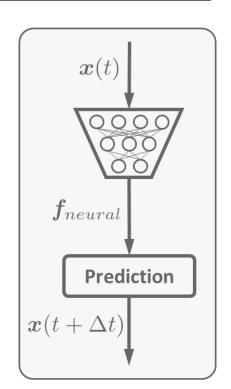
Our contribution





- [1] Tobin et al., *ICRA*, 2018.
- [2] Kouw et al., *T-PAMI*,2019.
- [3] Ha et al., *IJRR*, 2025.

2. Neural ODE and learning residual



Considering a general ODE:

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}(t), \mathbf{I}(t), t)$$

Neural ODE^[1]:

Reverse-mode automatic differentiation

Training Neural ODEs with external input I(t)Appendix A.1

Given trajectories $\{x(t_1, t_2, \dots, t_N)\}$ Latent dynamics f(t)

Prediction:

$$x(t + \Delta t) = x(t) + \int_{t}^{t + \Delta t} f(x(\tau), I(\tau), \tau) d\tau$$

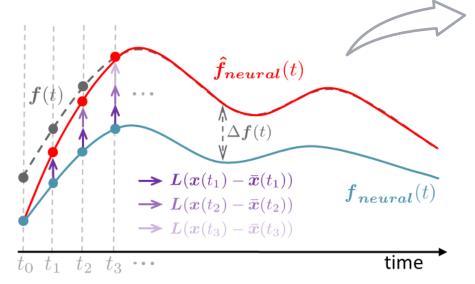
Learning residual:

$$f(x(t), I(t), t) = f_{neural}(x(t), I(t), t, \theta) + \Delta f(t)$$
 out of distribution

Bounded assumption: $\|\Delta f(t)\| \le \gamma$

3. Linear feedback

Correcting latent dynamics:



$$\hat{f}_{neural}(t) = f_{neural}(t) + \sum_{i=1}^{\kappa} L(x(t_i) - \overline{x}(t_i))$$
Accumulated errors

L – positive-definite gain

$$\overline{x}(t_i)$$
 - last prediction $\Rightarrow \overline{x}(t_i) = x(t_{i-1}) + T_s \hat{f}_{neural}(t_{i-1})$

Define
$$\widehat{x}(t) = \overline{x}(t) - \sum_{i=1}^{k-1} (x(t_i) - \overline{x}(t_i))$$

Achieve
$$\begin{cases} \widehat{\boldsymbol{f}}_{neural}(t) = \boldsymbol{f}_{neural}(t) + \boldsymbol{L}(\boldsymbol{x}(t) - \widehat{\boldsymbol{x}}(t)) \\ \widehat{\boldsymbol{x}}(t_k) = \widehat{\boldsymbol{x}}(t_{k-1}) + T_s \widehat{\boldsymbol{f}}_{neural}(t_{k-1}) \end{cases}$$

Convergence analysis:

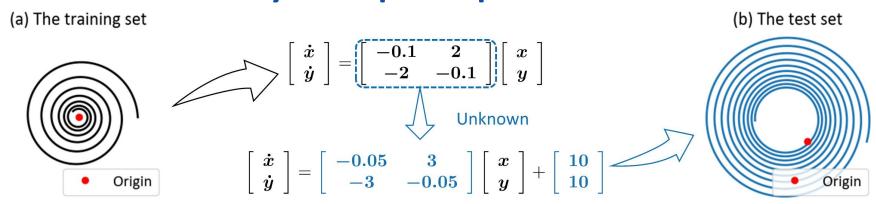
Define
$$\begin{cases} \widetilde{x}(t) = x(t) - \widehat{x}(t) \\ \widetilde{f}(t) = f(t) - \widehat{f}_{neural}(t) \end{cases}$$

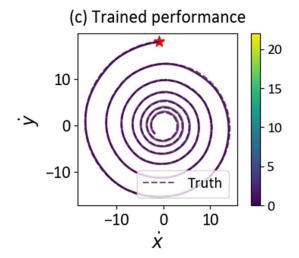
Error dynamics
$$\dot{\tilde{x}}(t) = -L\tilde{x}(t) + \Delta f(t)$$

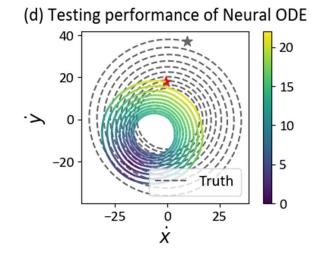
Define
$$\begin{cases} \widetilde{x}(t) = x(t) - \widehat{x}(t) \\ \widetilde{f}(t) = f(t) - \widehat{f}_{neural}(t) \end{cases} \xrightarrow{\text{Error dynamics}} \begin{cases} \widetilde{x}(t) \in \mathbb{R}^n : \|\widetilde{x}(t)\| \leq \gamma/\lambda_m(L) \} \\ \{\widetilde{x}(t) \in \mathbb{R}^n : \|\widetilde{x}(t)\| \leq \gamma\lambda_m(L) / \lambda_m(L) + \gamma \} \end{cases}$$

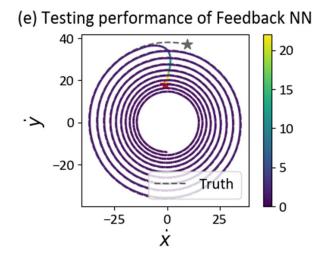
3. Linear feedback

Toy example – spiral curve





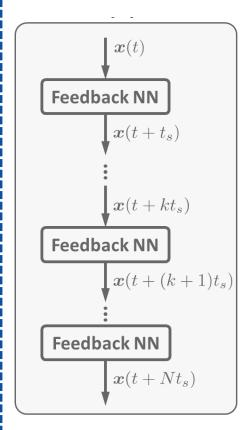


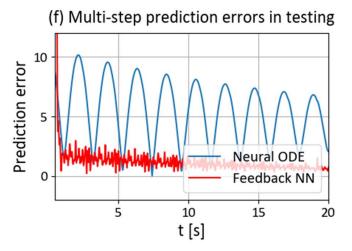


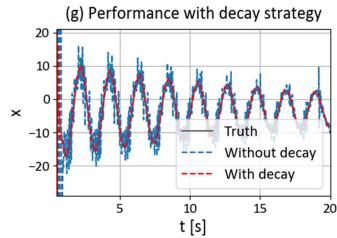
The learnt latent dynamics is corrected accurately

3. Linear feedback

Multi-step prediction:

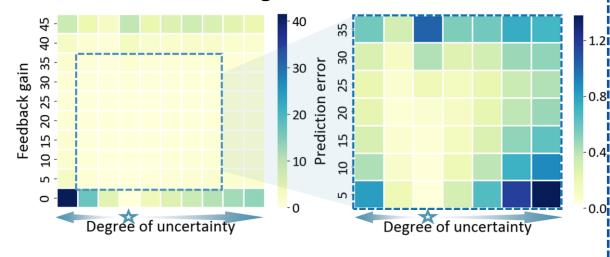






Ablation study on linear gain:

Different levels of gains and uncertainties



Uncertainty

Prediction error

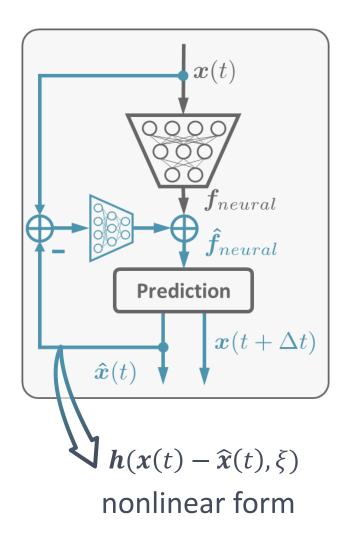
Gain

Prediction error

Gain

Prediction error

4. Neural feedback



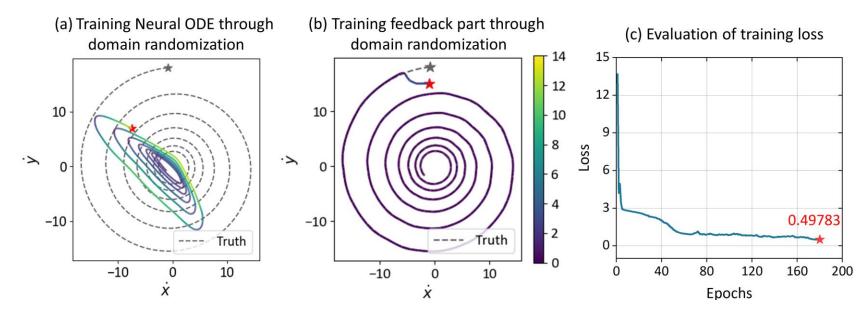
Training procedure:

$$oldsymbol{\xi}^* = rg \min_{oldsymbol{\xi}} \sum_{i=1}^{n_{case}} \sum_{j \in \mathcal{D}_i^{tra}} \left\| oldsymbol{x}_{i,j}^* - oldsymbol{x}_{i,j}
ight\|$$

s.t.
$$x_{i,j} = x_{i,j-1} + T_s \left(f_{neural}(x_{i,j-1}) + h_{neural} \left(x_{i,j-1} - \hat{x}_{i,j-1}, \xi \right) \right)$$

with n_{case} randomized cases through domain randomization.

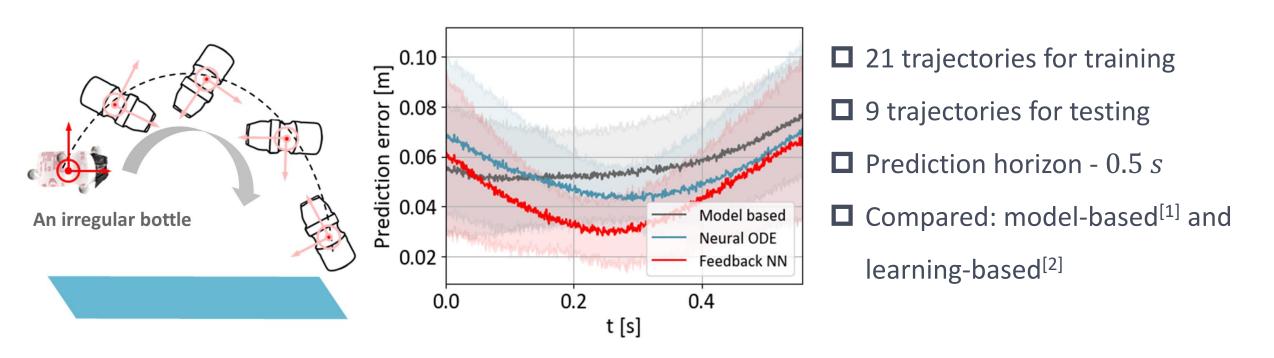
Training results:



5. Empirical study – Irregular object

Task: Trajectory prediction of an irregular object

Challenge: The aerodynamic drag is **intractable**



[1]Muller et al., Quadrocopter ball juggling, IROS, 2011.

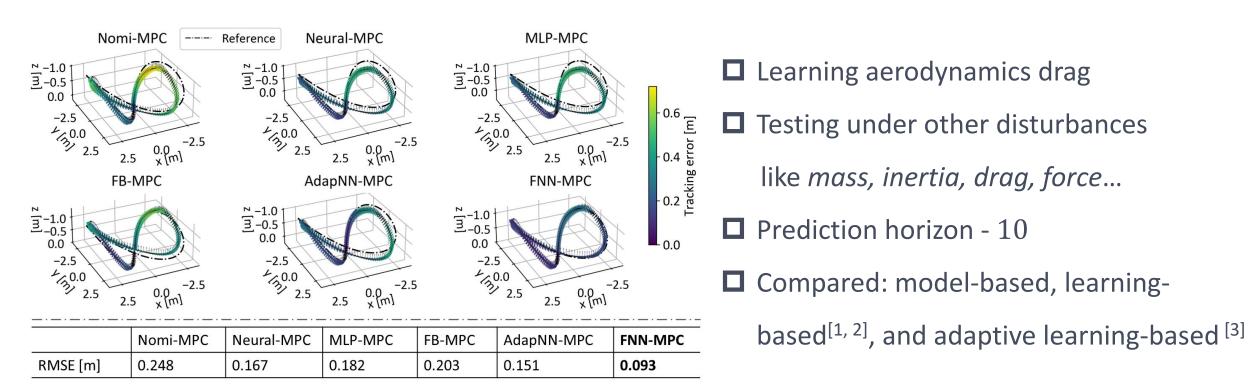
[2] Chen et al., Neural ordinary differential equations, NeurIPS, 2018.

[3] Jia et al., EVOLVER: Online learning and prediction of disturbances for robot control, TRO, 2024.

5. Empirical study – Quadrotor flight

Task: Agile trajectory tracking of quadrotor under multiple disturbances

Challenge: MPC needs an accurate dynamics

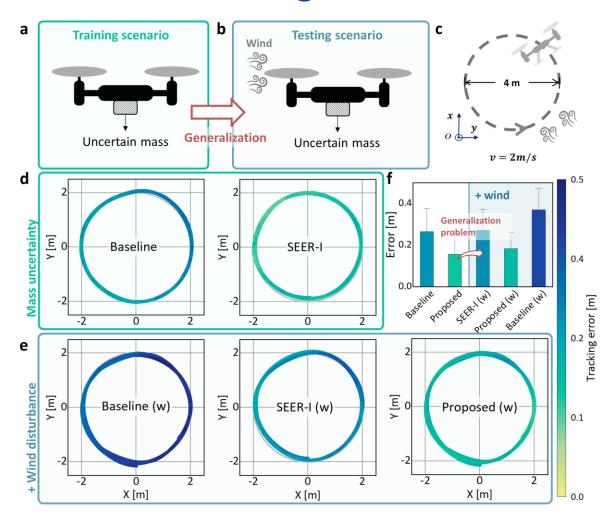


[1] Chen et al., Neural ordinary differential equations, *NeurIPS*, 2018. [2]Saviolo et al., Learning quadrotor dynamics for precise, safe, and agile flight control, *ARC*, 2011. [3] Cheng et al., Human motion prediction using semi-adaptable neural networks, *TRO*, 2024.

5. Empirical study – Extension

Feedback improve the generalization of other learning methods

- Training under mass uncertainty
- Testing with additional wind
- \square Flight speed 2 m/s
- ☐ Wind speed 5m/s



[1] Jia et al., FORESEER: Recognize and utilize uncertainties by integrating data-based learning and symbolic feedback, 2025.

Thanks for your attention!

Paper

Source Code

Project Site

