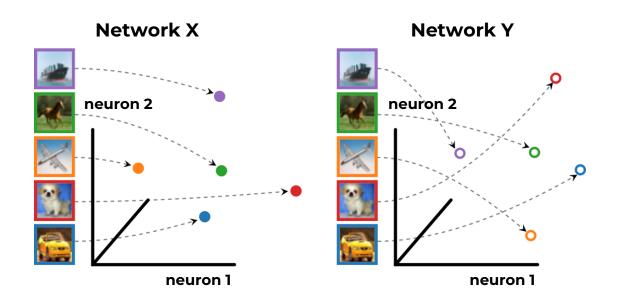


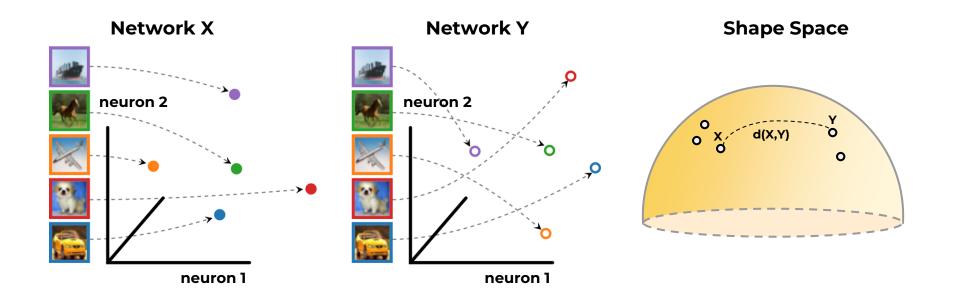
COMPARING NOISY NEURAL POPULATION DYNAMICS USING OPTIMAL TRANSPORT DISTANCES

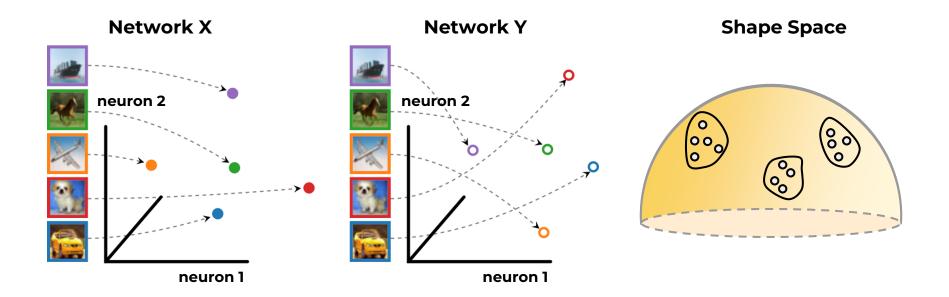
Amin Nejatbakhsh¹, Victor Geadah^{1,2}, Alex H. Williams^{1,3} & David Lipshutz^{1,4}

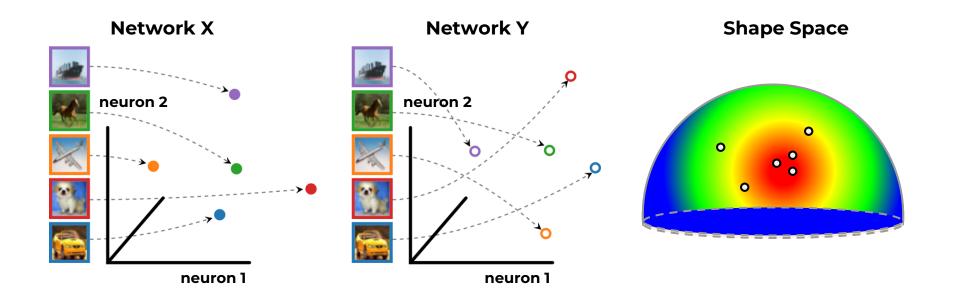
¹Center for Computation Neuroscience, Flatiron Institute; ² Applied and Computational Mathematics, Princeton University; ³ Center for Neural Science, New York University; ⁴ Department of Neuroscience, Baylor College of Medicine

neuron 2

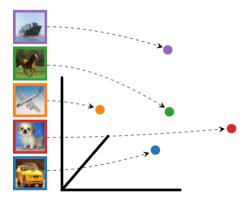




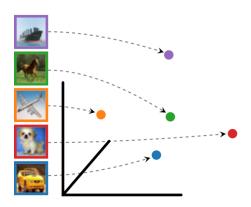




Deterministic responses



Deterministic responses



Linear regression (Yamins et al. 2014)

Representational Similarity Analysis

(Kriegeskorte et al. 2008)

One-to-One Matching (Li et al. 2016)

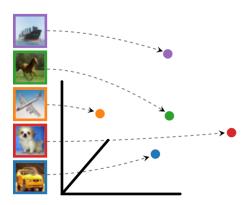
Canonical Correlations Analysis (Raghu et al. 2017)

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020)

Shape distances (Williams et al. 2021)

Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis

(Kriegeskorte et al. 2008)

One-to-One Matching (Li et al. 2016)

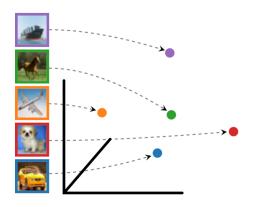
Canonical Correlations Analysis (Raghu et al. 2017)

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020) **Shape distances** (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

Deterministic responses



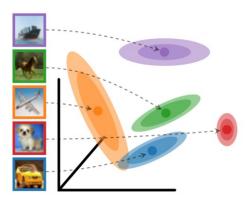
Linear regression (Yamins et al. 2014)
Representational Similarity Analysis
(Kriegeskorte et al. 2008)
One-to-One Matching (Li et al. 2016)
Canonical Correlations Analysis (Raghu et al. 2017)
Control Kernel Alignment (Kernelith et al.

Centered Kernel Alignment (Kornblith et al. 2019)

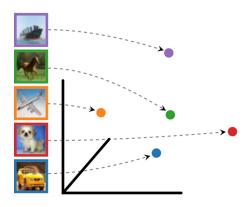
Procrustes alignment (Degenhart et al. 2020) **Shape distances** (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

Stochastic responses



Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis (Kriegeskorte et al. 2008)

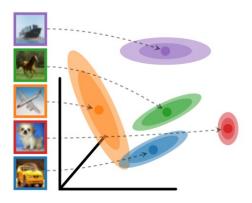
One-to-One Matching (Li et al. 2016) Canonical Correlations Analysis (Raghu et al. 2017)

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020) Shape distances (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

Stochastic responses



Stochastic Shape Distances (Duong et al. 2023)

Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis (Kriegeskorte et al. 2008)

One-to-One Matching (Li et al. 2016) Canonical Correlations Analysis (Raghu et al.

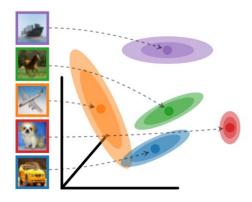
Canonical Correlations Analysis (Raghu et a 2017)

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020) Shape distances (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

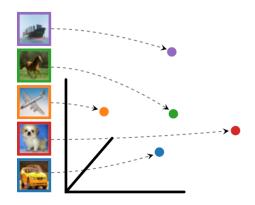
Stochastic responses



Stochastic Shape Distances (Duong et al. 2023)

Applications: VAEs, BNNs, Dropout, Noise Injection

Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis (Kriegeskorte et al. 2008)

2017)

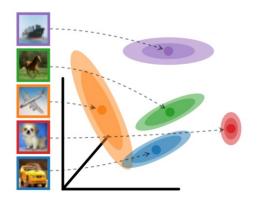
One-to-One Matching (Li et al. 2016)
Canonical Correlations Analysis (Raghu et al.

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020) Shape distances (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

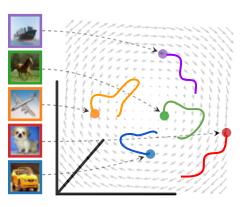
Stochastic responses



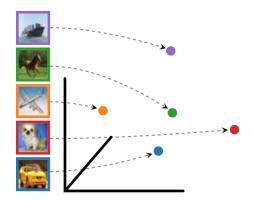
Stochastic Shape Distances (Duong et al. 2023)

Applications: VAEs, BNNs, Dropout, Noise Injection

Deterministic dynamic responses



Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis (Kriegeskorte et al. 2008)

One-to-One Matching (Li et al. 2016) Canonical Correlations Analysis (Raghu et al.

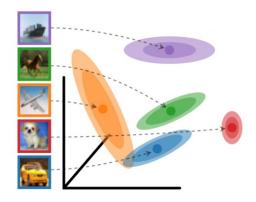
2017)
Centered Kernel Alignment (Kornblith et al.

2019)

Procrustes alignment (Degenhart et al. 2020) **Shape distances** (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

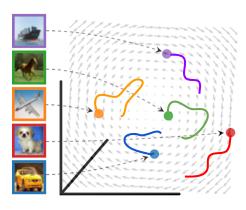
Stochastic responses



Stochastic Shape Distances (Duong et al. 2023)

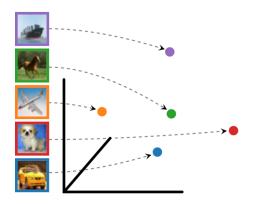
Applications: VAEs, BNNs, Dropout, Noise Injection

Deterministic dynamic responses



Dynamic Similarity Analysis (Ostrow et al. 2024)

Deterministic responses



Linear regression (Yamins et al. 2014) Representational Similarity Analysis (Kriegeskorte et al. 2008)

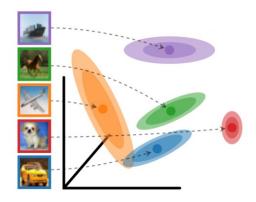
One-to-One Matching (Li et al. 2016) Canonical Correlations Analysis (Raghu et al. 2017)

Centered Kernel Alignment (Kornblith et al. 2019)

Procrustes alignment (Degenhart et al. 2020) Shape distances (Williams et al. 2021)

Applications: ConvNets, MLPs, etc.

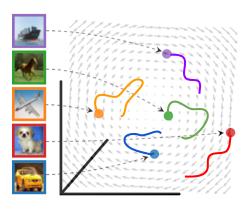
Stochastic responses



Stochastic Shape Distances (Duong et al. 2023)

Applications: VAEs, BNNs, Dropout, Noise Injection

Deterministic dynamic responses

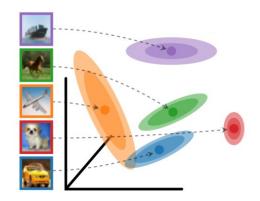


Dynamic Similarity Analysis (Ostrow et al. 2024)

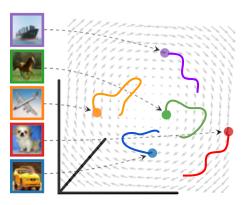
Applications: RNNs, SSMs (e.g. MAMBA), Transformers, Diffusion Models, biological systems, etc.

assumptions
Deterministic responses

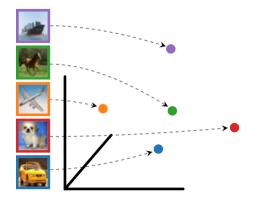
Stochastic responses



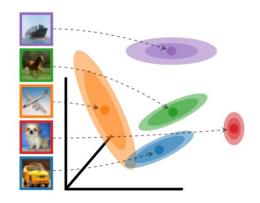
Deterministic dynamic responses



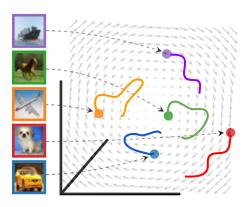
assumptions
Deterministic responses



Stochastic responses



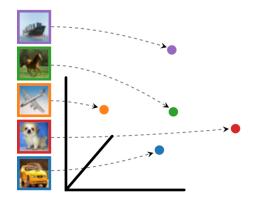
Deterministic dynamic responses



Procrustes Distance

$$\min_{m{Q} \in O(N)} \sum_{c=1}^{C} \|m{m}_x(c) - m{Q}m{m}_y(c)\|_2^2$$
Mean Rotational alignment

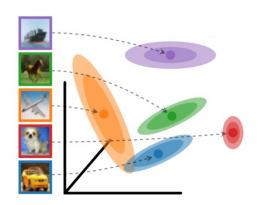
assumptions Deterministic responses



Procrustes Distance

$$\min_{\boldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \|\boldsymbol{m}_x(c) - \boldsymbol{Q}\boldsymbol{m}_y(c)\|_2^2$$
 Mean Rotational alignment

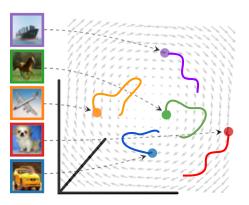
Stochastic responses



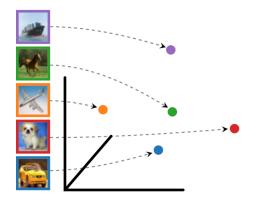
Stochastic Shape Distance (SSD)

$$egin{aligned} \min_{oldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \left\{ (2-lpha) \| oldsymbol{m}_x(c) - \mathbf{Q} oldsymbol{m}_y(c) \|^2 \ + lpha \mathcal{B}^2 \left(oldsymbol{P}_x(c), \mathbf{Q} oldsymbol{P}_y(c) \mathbf{Q}^{ op}
ight)
ight\}, \ ext{Covariance} \end{aligned}$$

Deterministic dynamic responses



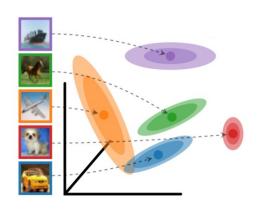
assumptions Deterministic responses



Procrustes Distance

$$\min_{\boldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \|\boldsymbol{m}_x(c) - \boldsymbol{Q}\boldsymbol{m}_y(c)\|_2^2$$
 Mean Rotational alignment

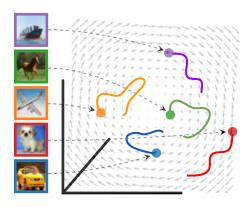
Stochastic responses



Stochastic Shape Distance (SSD)

$$egin{aligned} \min_{oldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \left\{ (2-lpha) \| oldsymbol{m}_x(c) - \mathbf{Q} oldsymbol{m}_y(c) \|^2 \ + lpha \mathcal{B}^2 \left(oldsymbol{P}_x(c), \mathbf{Q} oldsymbol{P}_y(c) \mathbf{Q}^ op
ight)
ight\}, \ ext{Covariance} \end{aligned}$$

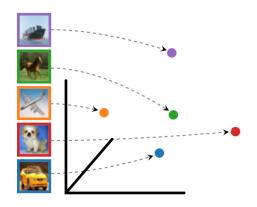
Deterministic dynamic responses



Dynamic Similarity Analysis (DSA)

$$\min_{oldsymbol{Q} \in O(N)} \|oldsymbol{A}_x - oldsymbol{Q} oldsymbol{A}_y oldsymbol{Q}^ op \|_F$$
 Linearized flow field

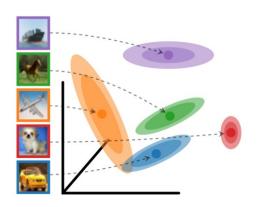
assumptions Deterministic responses



Procrustes Distance

$$\min_{\boldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \|\boldsymbol{m}_x(c) - \boldsymbol{Q}\boldsymbol{m}_y(c)\|_2^2$$
 Mean Rotational alignment

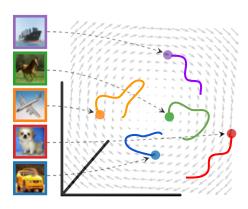
Stochastic responses



Stochastic Shape Distance (SSD)

$$egin{aligned} \min_{oldsymbol{Q} \in O(N)} \sum_{c=1}^{C} \left\{ (2-lpha) \| oldsymbol{m}_x(c) - \mathbf{Q} oldsymbol{m}_y(c) \|^2 \ + lpha \mathcal{B}^2 \left(oldsymbol{P}_x(c), \mathbf{Q} oldsymbol{P}_y(c) \mathbf{Q}^{ op}
ight)
ight\}, \ ext{Covariance} \end{aligned}$$

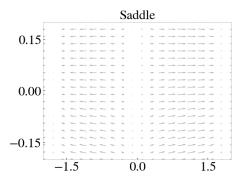
Deterministic dynamic responses

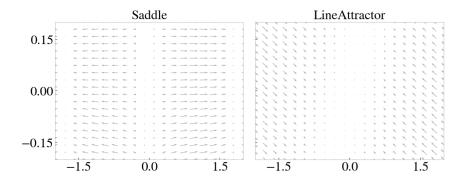


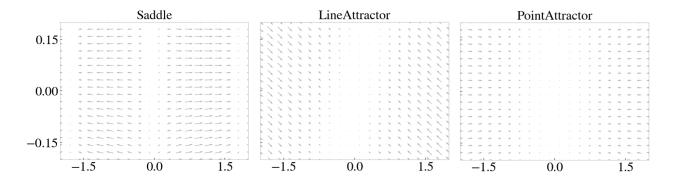
Dynamic Similarity Analysis (DSA)

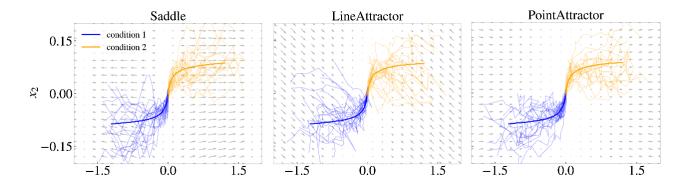
$$\min_{oldsymbol{Q} \in O(N)} \|oldsymbol{A}_x - oldsymbol{Q} oldsymbol{A}_y oldsymbol{Q}^ op \|_F$$
 Linearized flow field

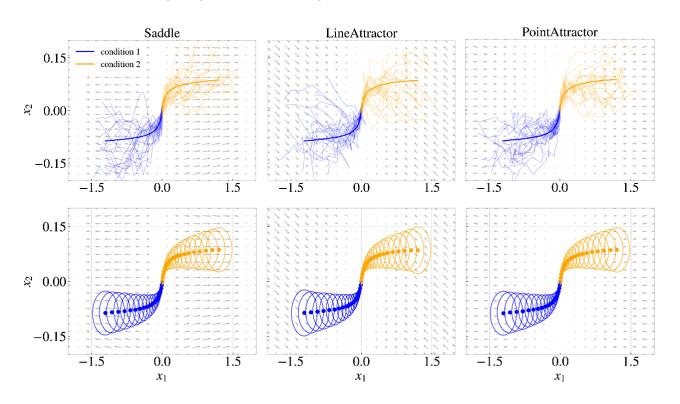
Existing methods assume either dynamic or stochastic responses; not both.





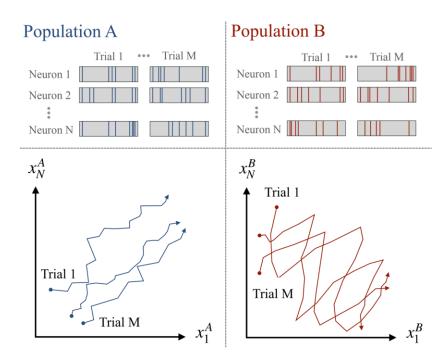




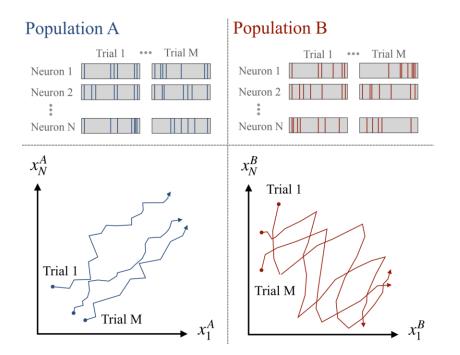


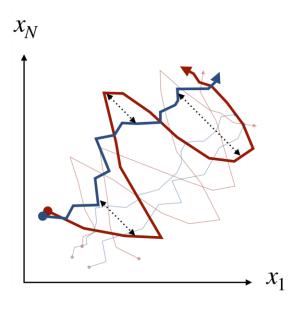
Key idea: compute distances on trajectories

Key idea: compute distances on trajectories



Key idea: compute distances on trajectories





Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $oldsymbol{m}_x(t)$

Noise covariance $extbf{\emph{P}}_x(s,t)$

Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $oldsymbol{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \dots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \dots & oldsymbol{P}_x(T,T) \end{bmatrix}$$

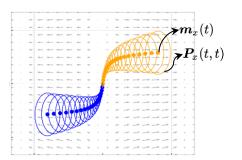
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $oldsymbol{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \dots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \dots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $oldsymbol{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \ldots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \ldots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Causal OT

$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \boldsymbol{Q}\boldsymbol{m}_y(t)\|^2 + \alpha \mathcal{A}\mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q}) \boldsymbol{C}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

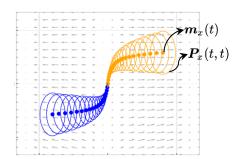
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $m{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \dots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \dots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Causal OT

Aligned mean dist.

$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \boldsymbol{Q}\boldsymbol{m}_y(t)\|^2 + \alpha \mathcal{A}\mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q})\boldsymbol{C}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

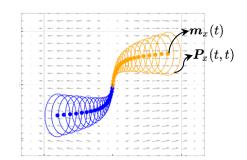
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $m{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \ldots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \ldots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Causal OT

Aligned mean dist. Aligned covariance dist.
$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \boldsymbol{Q}\boldsymbol{m}_y(t)\|^2 + \alpha \mathcal{A}\mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q}) \boldsymbol{C}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

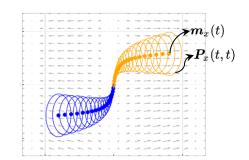
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $m{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \dots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \dots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Causal OT

Aligned mean dist. Aligned covariance dist.
$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \boldsymbol{Q}\boldsymbol{m}_y(t)\|^2 + \alpha \mathcal{A}\mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q}) \boldsymbol{C}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

Rotational alignment

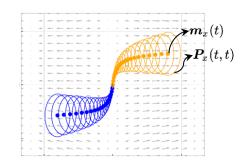
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $m{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \dots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \dots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



Causal OT

Aligned mean dist. Aligned covariance dist.
$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \underline{\boldsymbol{Q}} \boldsymbol{m}_y(t)\|^2 + \alpha \underline{\mathcal{A}} \mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q}) \boldsymbol{C}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

Rotational alignment

Adapted **Bures dist.**

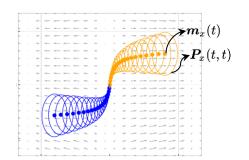
Stochastic dynamics $\mathbf{x}(t)$

Mean trajectory $m{m}_x(t)$

Noise covariance $P_x(s,t)$

Noise covariance

$$egin{bmatrix} oldsymbol{C}_x = egin{bmatrix} oldsymbol{P}_x(1,1) & \ldots & oldsymbol{P}_x(1,T) \ dots & \ddots & dots \ oldsymbol{P}_x(T,1) & \ldots & oldsymbol{P}_x(T,T) \end{bmatrix}$$



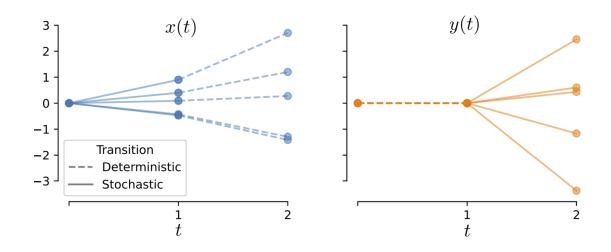
Causal OT

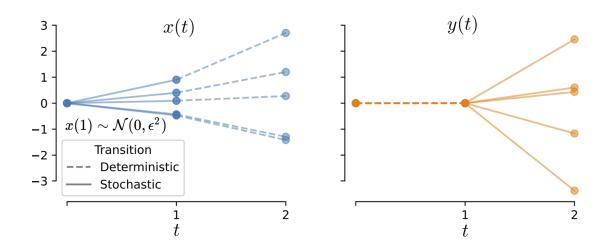
Aligned mean dist. Aligned covariance dist.
$$d_{\alpha\text{-causal}}(\mathbf{x},\mathbf{y}) := \min_{\boldsymbol{Q} \in O(N)} \left\{ \sum_{t=1}^T (2-\alpha) \|\boldsymbol{m}_x(t) - \underline{\boldsymbol{Q}} \boldsymbol{m}_y(t)\|^2 + \alpha \underline{\mathcal{A}} \mathcal{B}_{N,T}^2(\boldsymbol{C}_x, (\boldsymbol{I}_T \otimes \boldsymbol{Q}) \underline{\boldsymbol{C}}_y(\boldsymbol{I}_T \otimes \boldsymbol{Q}^\top)) \right\},$$

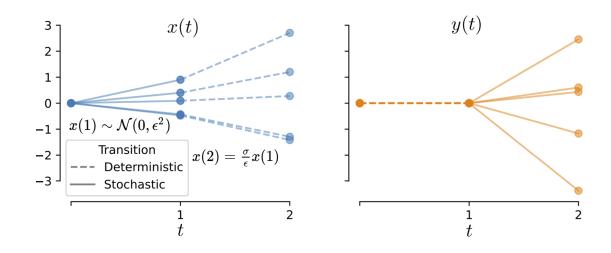
Rotational alignment

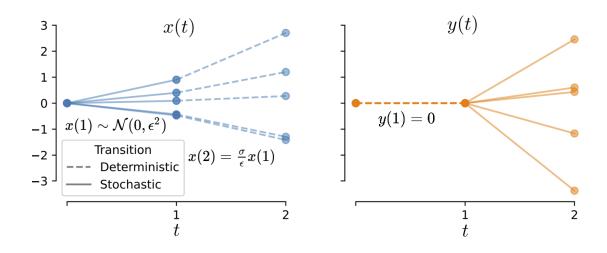
Adapted Bures dist.

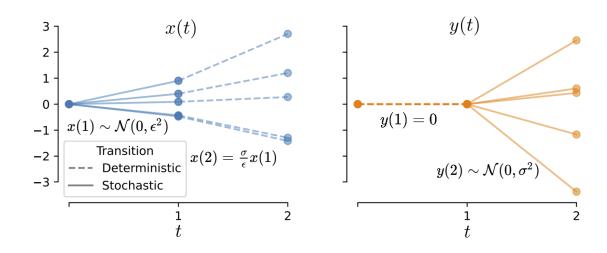
Full NT×NT covariance

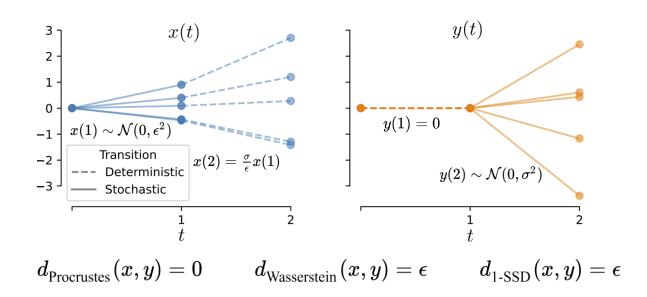


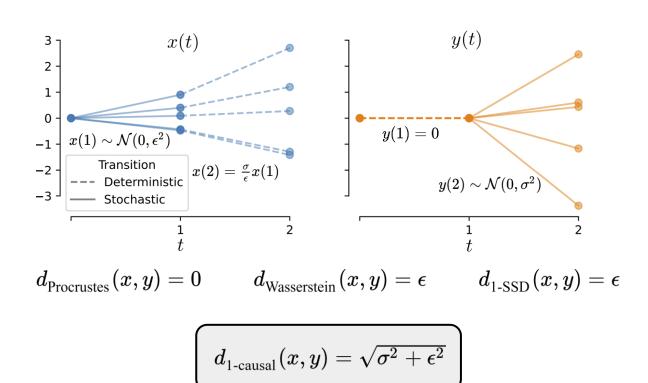












Motor preparatory dynamics in the null space of cortical activity

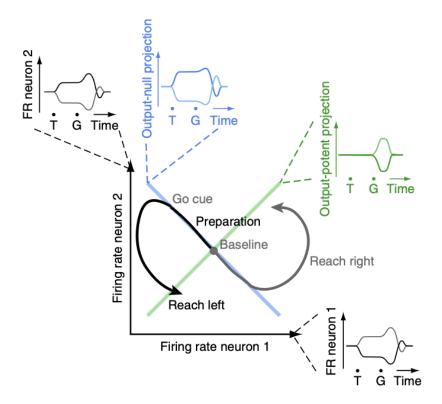


Figure from Kaufman et al, Nat. Neuro, 2014

Motor preparatory dynamics in the null space of cortical activity

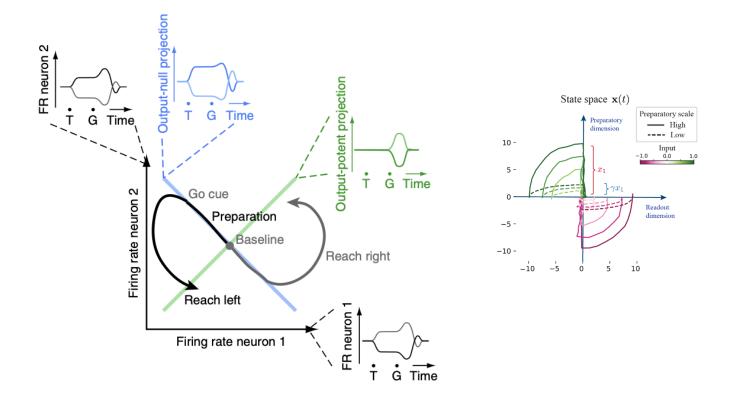
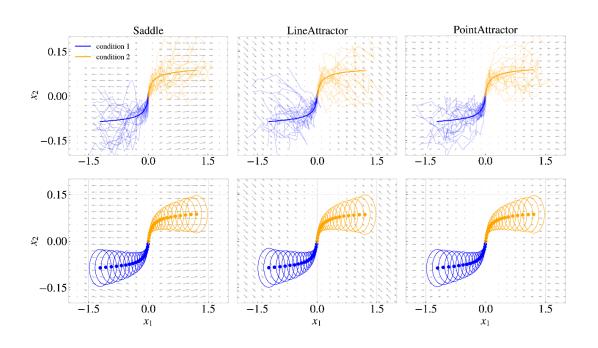
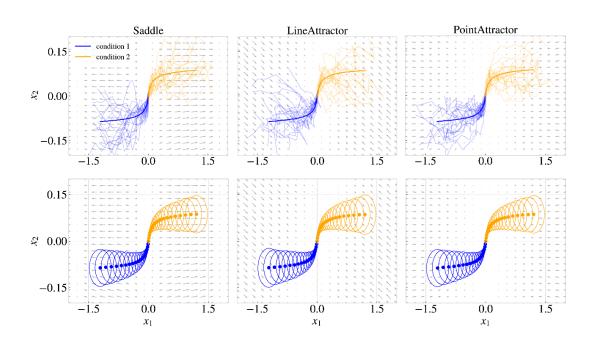
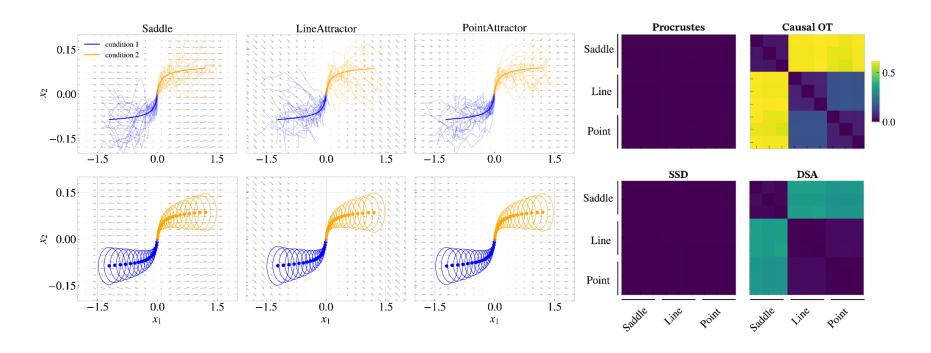


Figure from Kaufman et al, Nat. Neuro, 2014

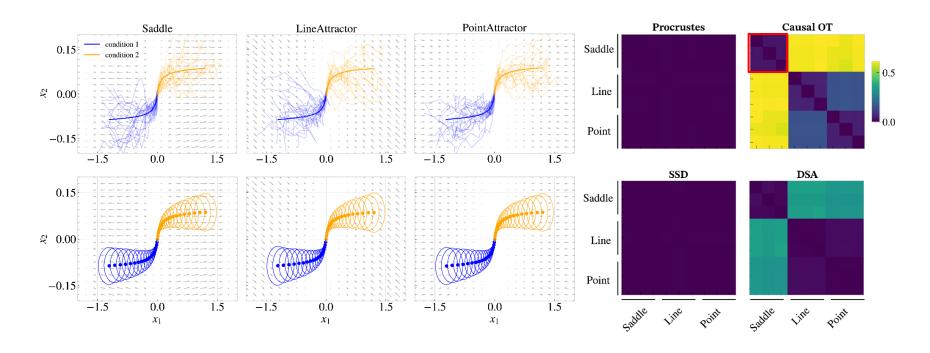


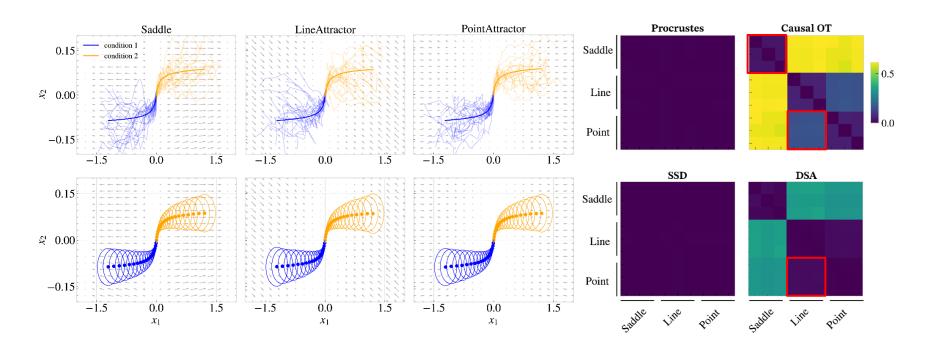
$$\left\{ \begin{array}{ll} \mathsf{Dynamics} \ \mathsf{of} \\ \mathsf{mean} \ \mathsf{and} \\ \mathsf{covariance} \end{array} \right. \left\{ \begin{array}{ll} \boldsymbol{m}_x(t) = \boldsymbol{A}(t) \boldsymbol{m}_x(t-1) + \boldsymbol{b}(t) & \mathsf{Adversarially} \\ \boldsymbol{P}_x(t) = \boldsymbol{A}(t) \boldsymbol{P}_x(t-1) \boldsymbol{A}(t)^\top + \boldsymbol{\Sigma}(t) \boldsymbol{\Sigma}(t)^\top. \end{array} \right. \left. \begin{array}{ll} \mathsf{Adversarially} \\ \mathsf{tune} \ \mathsf{inputs} \ \mathsf{and} \\ \boldsymbol{\Sigma}(t) \end{array} \right.$$





$$\left\{ \begin{array}{ll} \mathsf{Dynamics} \ \mathsf{of} \\ \mathsf{mean} \ \mathsf{and} \\ \mathsf{covariance} \end{array} \right. \left\{ \begin{array}{ll} \boldsymbol{m}_x(t) = \boldsymbol{A}(t) \boldsymbol{m}_x(t-1) + \boldsymbol{b}(t) & \mathsf{Adversarially} \\ \boldsymbol{P}_x(t) = \boldsymbol{A}(t) \boldsymbol{P}_x(t-1) \boldsymbol{A}(t)^\top + \boldsymbol{\Sigma}(t) \boldsymbol{\Sigma}(t)^\top. & \mathsf{latent} \ \mathsf{noise} \end{array} \right. \left\{ \begin{array}{ll} \boldsymbol{b}(t) \\ \boldsymbol{\Sigma}(t) \end{array} \right.$$





Trajectories form the stochastic process

x^{model M, prompt A}

Trajectories form the stochastic process

x^{model M, prompt A}

Primate

Trajectories form the stochastic process

x^{model M, prompt A}

Primate

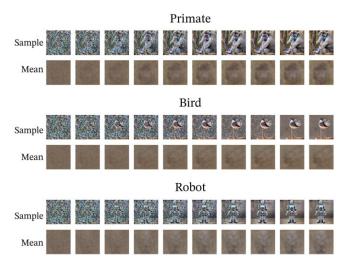
Trajectories form the stochastic process

x^{model M, prompt A}

Primate Sample Bird Sample Robot Robot Mean

Trajectories form the stochastic process

xmodel M, prompt A

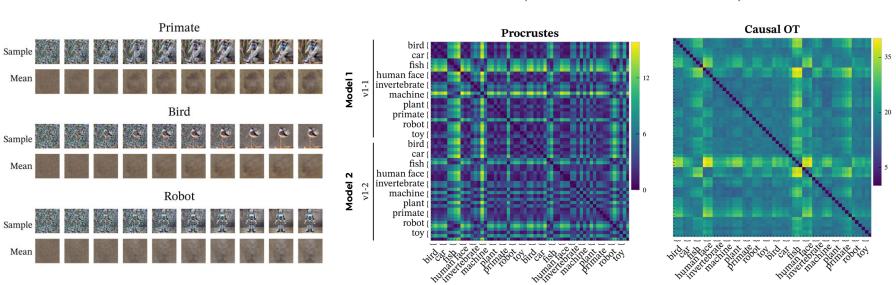


Computing distances between conditionals

Trajectories form the stochastic process

xmodel M, prompt A

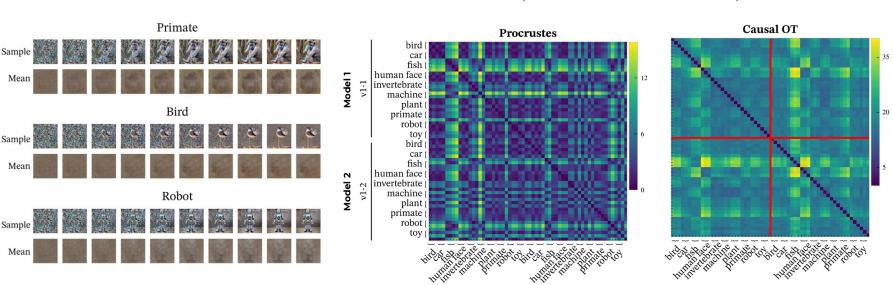
Computing distances between conditionals



Trajectories form the stochastic process

xmodel M, prompt A

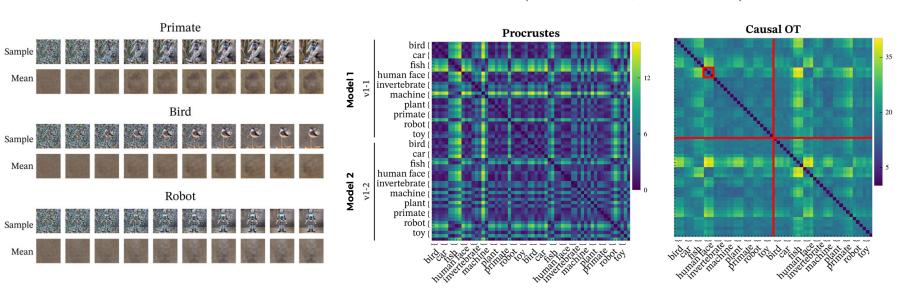
Computing distances between conditionals



Trajectories form the stochastic process

xmodel M, prompt A

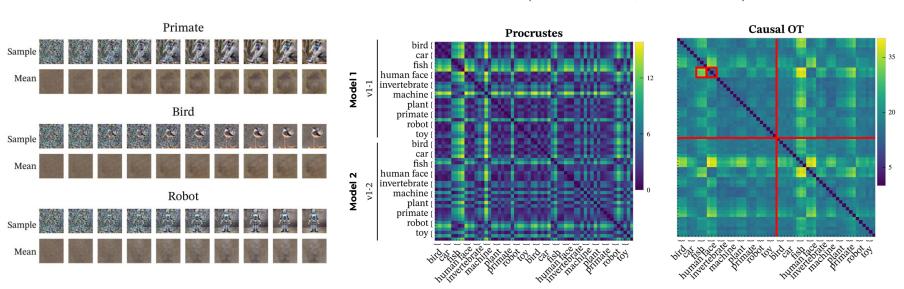
Computing distances between conditionals



Trajectories form the stochastic process

xmodel M, prompt A

Computing distances between conditionals



• Representational similarity enables studying shared computational principles across neural systems.

- **Representational similarity** enables studying shared computational principles across neural systems.
- Existing methods for comparing population activity either assume **dynamic** or **stochastic** responses; **not both.**

- **Representational similarity** enables studying shared computational principles across neural systems.
- Existing methods for comparing population activity either assume **dynamic** or **stochastic** responses; **not both.**
- We demonstrate that existing metrics can **fail to capture key differences between neural systems** with **noisy dynamic responses.**

- **Representational similarity** enables studying shared computational principles across neural systems.
- Existing methods for comparing population activity either assume **dynamic** or **stochastic** responses; **not both.**
- We demonstrate that existing metrics can **fail to capture key differences between neural systems** with **noisy dynamic responses.**
- We then propose a metric for comparing the geometry of noisy neural trajectories, which can be derived as an optimal transport distance between Gaussian processes.

- **Representational similarity** enables studying shared computational principles across neural systems.
- Existing methods for comparing population activity either assume **dynamic** or **stochastic** responses; **not both.**
- We demonstrate that existing metrics can **fail to capture key differences between neural systems** with **noisy dynamic responses.**
- We then propose a metric for comparing the geometry of noisy neural trajectories, which can be derived as an optimal transport distance between Gaussian processes.
- We use the metric to compare models of neural responses in different regions of the motor system and to compare the dynamics of latent diffusion models for text-toimage synthesis.

- **Representational similarity** enables studying shared computational principles across neural systems.
- Existing methods for comparing population activity either assume **dynamic** or **stochastic** responses; **not both.**
- We demonstrate that existing metrics can **fail to capture key differences between neural systems** with **noisy dynamic responses.**
- We then propose a metric for comparing the geometry of noisy neural trajectories, which can be derived as an optimal transport distance between Gaussian processes.
- We use the metric to compare models of neural responses in different regions of the motor system and to compare the dynamics of latent diffusion models for text-to-image synthesis.

<u>Future direction:</u> Computing Causal-OT requires many trials. The latent variable model in [1] can reduce the computational cost and data requirements.

Poster #64 (Hall 3)

References

[1] Geadah, Victor, et al. "Modeling Neural Activity with Conditionally Linear Dynamical Systems." arXiv preprint arXiv:2502.18347 (2025).

[2] Lipshutz, David, et al. "Disentangling recurrent neural dynamics with stochastic representational geometry." ICLR 2024 Workshop on Representational Alignment. 2024.

[3] Barbosa, Joao, et al. "Quantifying Differences in Neural Population Activity With Shape Metrics." bioRxiv (2025): 2025-01.

[4] Ostrow, Mitchell, et al. "Beyond geometry: Comparing the temporal structure of computation in neural circuits with dynamical similarity analysis." NeurIPS (2023): 33824-33837.

Poster #64 (Hall 3)

References

[1] Geadah, Victor, et al. "Modeling Neural Activity with Conditionally Linear Dynamical Systems." arXiv preprint arXiv:2502.18347 (2025).

[2] Lipshutz, David, et al. "Disentangling recurrent neural dynamics with stochastic representational geometry." ICLR 2024 Workshop on Representational Alignment. 2024.

[3] Barbosa, Joao, et al. "Quantifying Differences in Neural Population Activity With Shape Metrics." bioRxiv (2025): 2025-01.

[4] Ostrow, Mitchell, et al. "Beyond geometry: Comparing the temporal structure of computation in neural circuits with dynamical similarity analysis." NeurIPS (2023): 33824-33837.

Poster #64 (Hall 3)

References

[1] Geadah, Victor, et al. "Modeling Neural Activity with Conditionally Linear Dynamical Systems." arXiv preprint arXiv:2502.18347 (2025).

[2] Lipshutz, David, et al. "Disentangling recurrent neural dynamics with stochastic representational geometry." ICLR 2024 Workshop on Representational Alignment. 2024.

[3] Barbosa, Joao, et al. "Quantifying Differences in Neural Population Activity With Shape Metrics." bioRxiv (2025): 2025-01.

[4] Ostrow, Mitchell, et al. "Beyond geometry: Comparing the temporal structure of computation in neural circuits with dynamical similarity analysis." NeurIPS (2023): 33824-33837.

SIM NS

Poster #64 (Hall 3)