Neural Networks on Symmetric Spaces of Noncompact Type

Xuan Son Nguyen

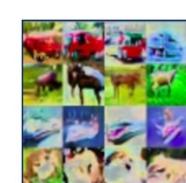
Shuo Yang

Aymeric Histace

ETIS, UMR 8051, CY Cergy Paris University, ENSEA, CNRS, Cergy, France

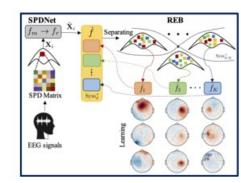
Applications of Riemannian Symmetric Spaces

Image generation



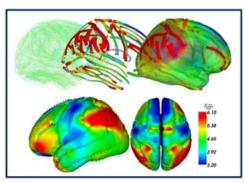
Huang et al., 2019

Brain-Computer Interfaces



Suh and Kim, 2021

Medical imaging



Pennec, 2006

Face recognition

Calinon, 2020

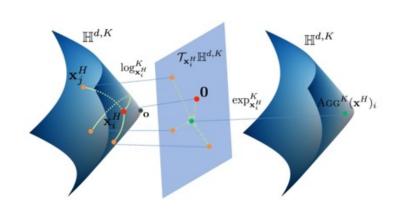
Robot learning

Some Applications of Symmetric Positive Definite (SPD) and Grassmann Manifolds

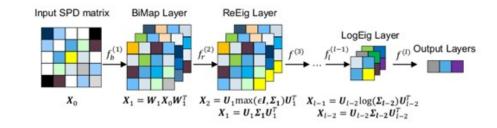
Huang et al., 2015

Problem And Related Works

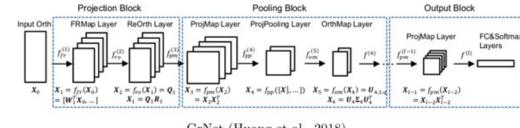
- Problem: Generalize Euclidean neural networks to the symmetric space setting.
- Existing approaches focus on building neural networks on hyperbolic spaces and matrix manifolds
- Existing approaches either work for SPD manifolds associated with special families of Riemannian metrics or require rich algebraic structures of the considered spaces, which limits their generality
- It is not trivial for existing works to generalize many traditional machine learning models to symmetric spaces due to the lack of concepts in Euclidean spaces for the considered spaces, e.g., hyperplanes and the distance from a point to a hyperplane.



HGCN (Chami et al., 2019)



SPDNet (Huang et al., 2017)



GrNet (Huang et al., 2018)

Proposed Approach

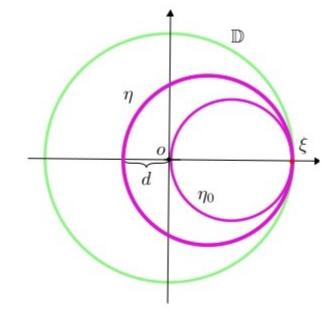
Contributions:

- Construct the point-to-hyperplane distance in a noncompact symmetric space.
- Derive an expression for the point-to-hyperplane distance in a noncompact symmetric space equipped with a G-invariant
- Fully-connected layers and an attention mechanism for neural networks on noncompact symmetric spaces.

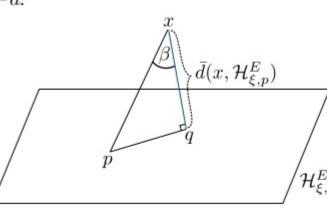
Let $\delta:[0,\infty)\to X$ be a (unit-speed) geodesic ray and $\xi=\delta(\infty)\in\partial X$. One defines the Busemann coordinate of a point $x \in X$ in the direction of ξ as

$$B_{\xi}(x) = \lim_{t \to \infty} (d(x, \delta(t)) - t).$$

The function $B_{\varepsilon}: X \to \mathbb{R}$ is called the Busemann function associated to the geodesic ray δ .



The boundary $\partial \mathbb{D}$ of the Poincaré disk model \mathbb{D} is illustrated by the green circle. The boundary point ξ is normal to both the horocycle η and the basic horocycle η_0 . The distance between the origin o and the horocycle ξ is -d.



The distance between a point x and a hyperplane $\mathcal{H}_{\xi,p}^E$.

Definition (Hyperplanes on a Symmetric Space). For $p \in X$ and $\xi \in \partial X$, hyperplanes on X are defined as

$$\mathcal{H}_{\xi,p} = \{ x \in X : B_{\xi}(\ominus p \oplus x) = 0 \},$$

where \ominus and \oplus are the inverse and binary operations on X, respectively.

Definition (Point-to-Hyperplane Distance on a Symmetric Space). Let $\mathcal{H}_{\xi,p}$ be a hyperplane, and let $\|\cdot\|_{\mathbb{S}}$ be a norm on X. Then the (signed) distance $\bar{d}(x,\mathcal{H}_{\xi,p})$ between a point $x\in X$ and $\mathcal{H}_{\mathcal{E},p}$ is defined as

$$\bar{d}(x, \mathcal{H}_{\xi,p}) = d(x,p) \frac{B_{\xi}(\ominus p \oplus x)}{\|\ominus p \oplus x\|_{\mathbb{S}}}.$$

Corollary. Let \ominus and \oplus be the Möbius subtraction \ominus_M and Möbius addition \oplus_M in \mathbb{B}_m , respectively, and let $\|\cdot\|_{\mathbb{S}}$ be the Euclidean norm $\|\cdot\|$. Let $p \in \mathbb{B}_m$, $\xi \in \partial \mathbb{B}_m$, and let $\mathcal{H}_{\xi,p}$ be a hyperplane. Then the distance $\bar{d}(x, \mathcal{H}_{\xi,p})$ between a point $x \in \mathbb{B}_m$ and $\mathcal{H}_{\xi,p}$ is computed by

$$\bar{d}(x, \mathcal{H}_{\xi, p}) = -\frac{d_{\mathbb{B}}(x, p)}{\|-p \oplus_{M} x\|} \log \frac{1 - \|-p \oplus_{M} x\|^{2}}{\|-p \oplus_{M} x - \xi\|^{2}}.$$

Proposition. Let $\phi: \operatorname{Sym}_m^+ \to \operatorname{Sym}_m$ be a diffeomorphism. Let \oplus and \ominus be the binary and inverse operations defined by

$$x \oplus y = \phi^{-1}(\phi(x) + \phi(y)),$$
$$\ominus x = \phi^{-1}(-\phi(x)),$$

where $x, y \in \operatorname{Sym}_m^+$. Let $\|\cdot\|_{\mathbb{S}}$ be the norm induced by the inner product $\langle\cdot\rangle_{\mathbb{S}}$ given as

$$\langle x, y \rangle_{\mathbb{S}} = \langle \phi(x), \phi(y) \rangle.$$

Let $\delta(t) = \phi^{-1}(ta)$ be a geodesic line in Sym_m^+ , where $a \in \operatorname{Sym}_m$ and ||a|| = 1. Let $\xi = \delta(\infty)$, $p \in \operatorname{Sym}_m^+$, and let $\mathcal{H}_{\xi,p}$ be a hyperplane. Then the distance $\bar{d}(x,\mathcal{H}_{\xi,p})$ between a point $x \in \operatorname{Sym}_m^+$ and $\mathcal{H}_{\xi,p}$ is computed as

$$\bar{d}(x, \mathcal{H}_{\xi,p}) = \langle a, \phi(p) - \phi(x) \rangle.$$

Corollary. Let $\delta(t) = k \exp(ta) K$ be a geodesic ray, where $k \in K$, $a \in \mathfrak{a}$, ||a|| = 1, and let $\xi = \delta(\infty)$. Let $p = hK \in X$, $h \in G$, and let $\mathcal{H}_{\xi,p}$ be a hyperplane. Then the distance $\bar{d}(x, \mathcal{H}_{\xi,p})$ between a point $x = gK \in X$, $g \in G$ and $\mathcal{H}_{\xi,p}$ is computed as

$$\bar{d}(x, \mathcal{H}_{\xi,p}) = \langle a, H(g^{-1}hk) \rangle.$$

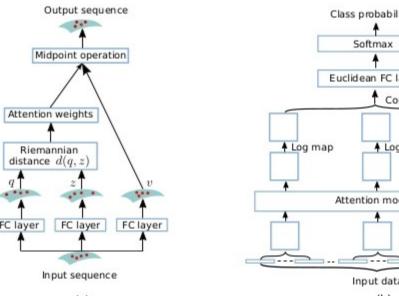
FC Layer

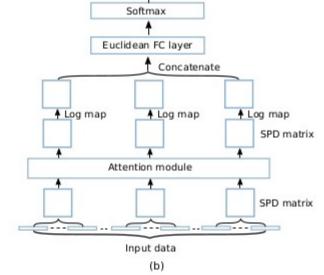
Proposition. Let $\delta_j(t) = k_j \exp(ta_j)K$, j = 1, ..., m be geodesic rays, where $k_j \in K$, $a_j \in \mathfrak{a}$, $||a_j||=1$. Let $v_j(x)=B_{\xi_j}(\ominus p_j\oplus x), j=1,\ldots,m$, where $\xi_j=\delta_j(\infty), p_j\in X$, and $x\in X$ is the input of an FC layer. Then the output y of the FC layer can be expressed as

$$y = n \exp([-v_1(x) \dots - v_m(x)])K,$$

where $n \in N$.

Attention Mechanism





Our proposed attention block (a) and the network architecture for EEG classification (b).

Experimental Results

Image Classification

Mean accuracies and standard deviations of Hybrid ResNet-18 models for image classification.

Method	CIFAR-10	CIFAR-100
Hybrid Poincaré (Guo et al. 2022)	95.04±0.13	77.19±0.50
Poincaré ResNet (van Spengler et al., 2023	94.51±0.15	76.60±0.32
Euclidean-Poincaré-H (Fan et al., 2023)	81.72±7.84	44.35±2.93
Euclidean-Poincaré-G (Ganea et al. 2018b	95.14±0.11	77.78±0.09
Euclidean-Poincaré-B (Ours)	95.23±0.08	77.78±0.15

Image Generation

Reconstruction and generation FID of hyperbolic VAEs (lower is better).

Method		CIFAR-10		CIFAR-100	
		Rec. FID	Gen. FID	Rec. FID	Gen. FID
Lorentz-Poincaré-H	Fan et al., 2023)	125.53±5.94	69.11±1.67	110.36±11.50	62.32±6.34
Lorentz-Poincaré-G	Ganea et al., 2018b)	39.68 ± 1.45	49.91±2.06	42.82±2.48	60.24±4.01
Lorentz-Poincaré-B ((Ours)	38.32±2.11	48.45±1.31	42.05±2.58	59.76 ±1.81

Natural Language Inference

Mean accuracies and standard deviations of HypGRU models for natural language inference.

Method	SNLI	PREFIX-10%	PREFIX-30%	PREFIX-50%
HypGRU (Ganea et al., 2018b)	80.89±0.17	96.75 ± 0.40	87.59±0.46	76.45±0.61
HypGRU-H (Fan et al., 2023)	80.66±0.46	92.20 ± 8.33	83.29±6.34	74.67±3.12
HypGRU-B (Ours)	81.01 ±0.35	97.03±0.11	87.69 ±0.04	76.25±0.07