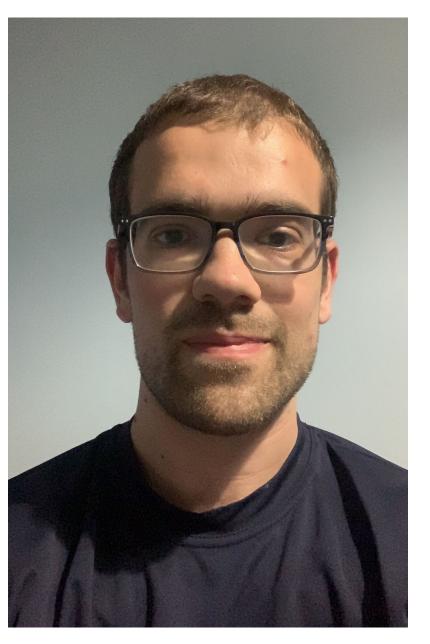
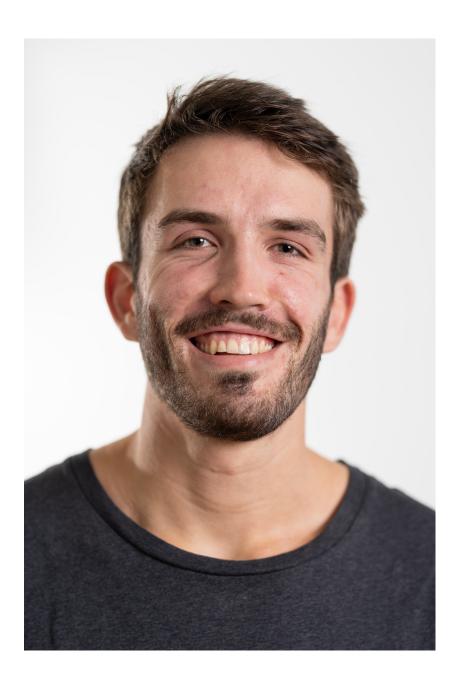
Standardizing Structural Causal Models

Joint work

Weronika Ormaniec



Scott Sussex



Lars Lorch

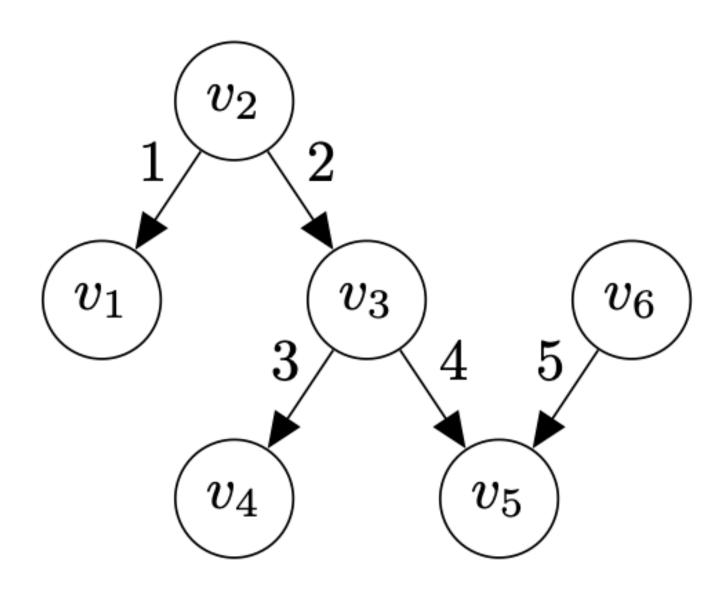
Bernhard Schölkopf

Andreas Krause

MAX PLANCK INSTITUTE
FOR INTELLIGENT SYSTEMS

Introduction

SCIVIS

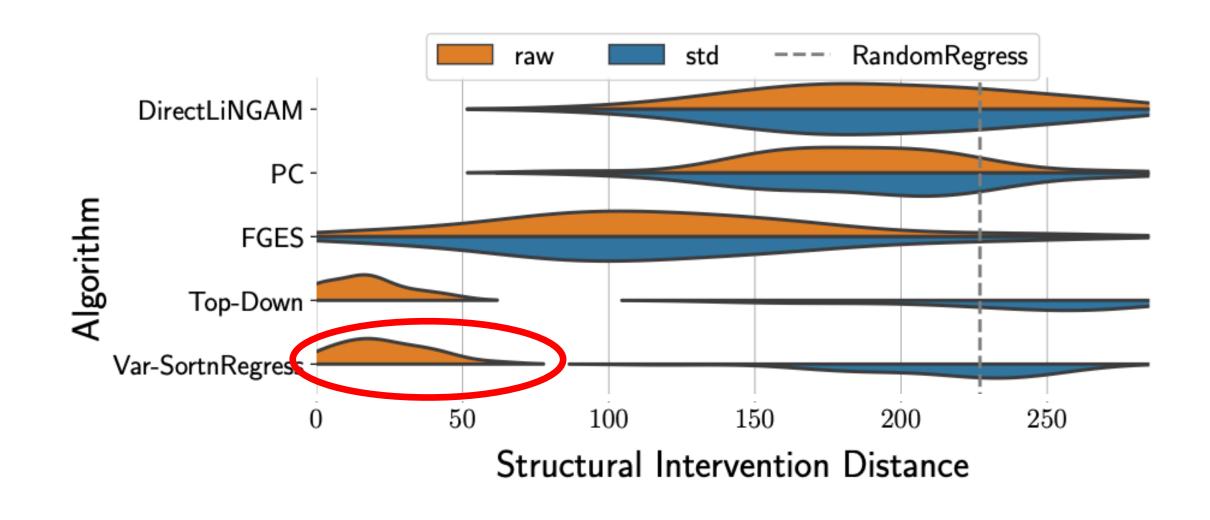


$$x_i := f_i(\mathbf{x}_{\mathrm{pa}(i)}, \varepsilon_i)$$

$$f_i(\mathbf{x}_{\mathrm{pa}(i)}, \varepsilon_i) = \mathbf{w}_i^\top \mathbf{x}_{\mathrm{pa}(i)} + \varepsilon_i$$

Linear SCMs — a common choice for benchmarking causal structure discovery algorithms

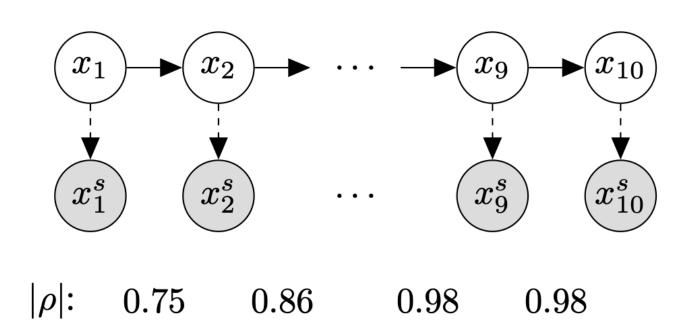
Problem: easy to game by exploiting increasing variance along the causal order



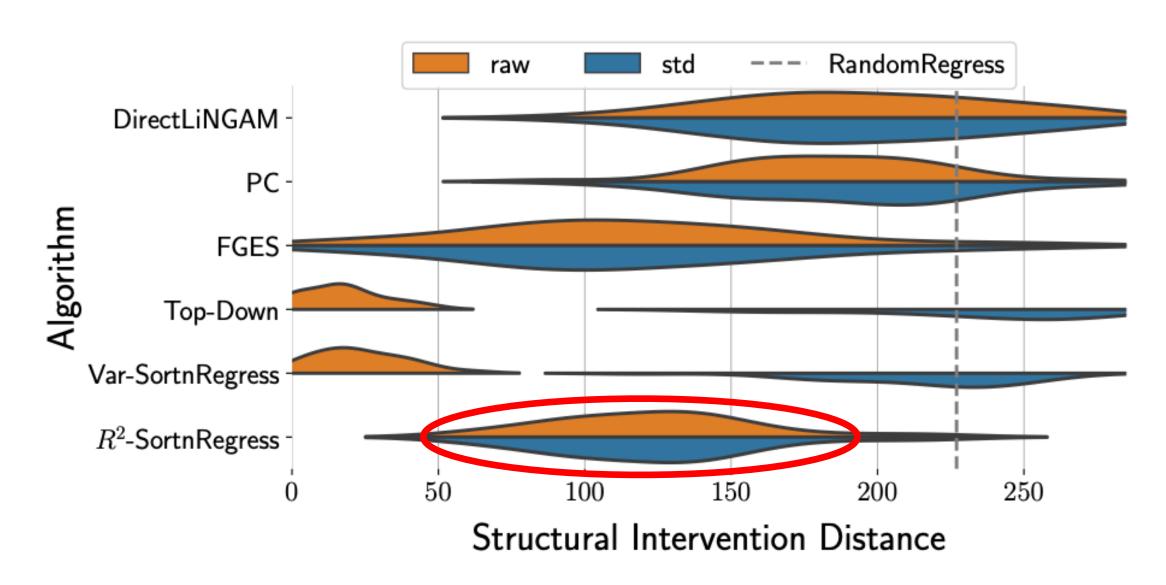
Reisach et al. A scale-invariant sorting criterion to find a causal order in additive noise models NeurIPS 2023

Standardized SCIVIs

Problem: still easy to game by exploiting increasing correlations between variables along the causal ordering



$$x_i^s := \frac{x_i - \mathbb{E}[x_i]}{\sqrt{\operatorname{Var}[x_i]}}$$



Reisach et al. A scale-invariant sorting criterion to find a causal order in additive noise models NeurIPS 2023

Our Solution

Internally-Standardized SCMs

Algorithm 1 Sampling from an iSCM

Input: DAG \mathcal{G} , noise distribution $\mathcal{P}_{\varepsilon}$, functions $\{f_1, ..., f_d\}$

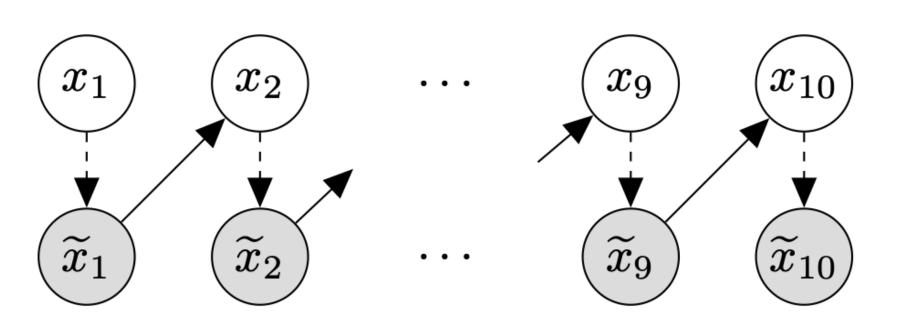
 $\pi \leftarrow$ topological ordering of \mathcal{G}

for i = 1 to d do

$$\varepsilon_{\pi_i} \sim \mathcal{P}_{\varepsilon_{\pi_i}}
x_{\pi_i} \leftarrow f_{\pi_i}(\widetilde{\mathbf{x}}_{\mathrm{pa}(\pi_i)}, \varepsilon_{\pi_i})
\widetilde{x}_{\pi_i} \leftarrow \frac{x_{\pi_i} - \mathbb{E}[x_{\pi_i}]}{\sqrt{\mathrm{Var}[x_{\pi_i}]}}$$

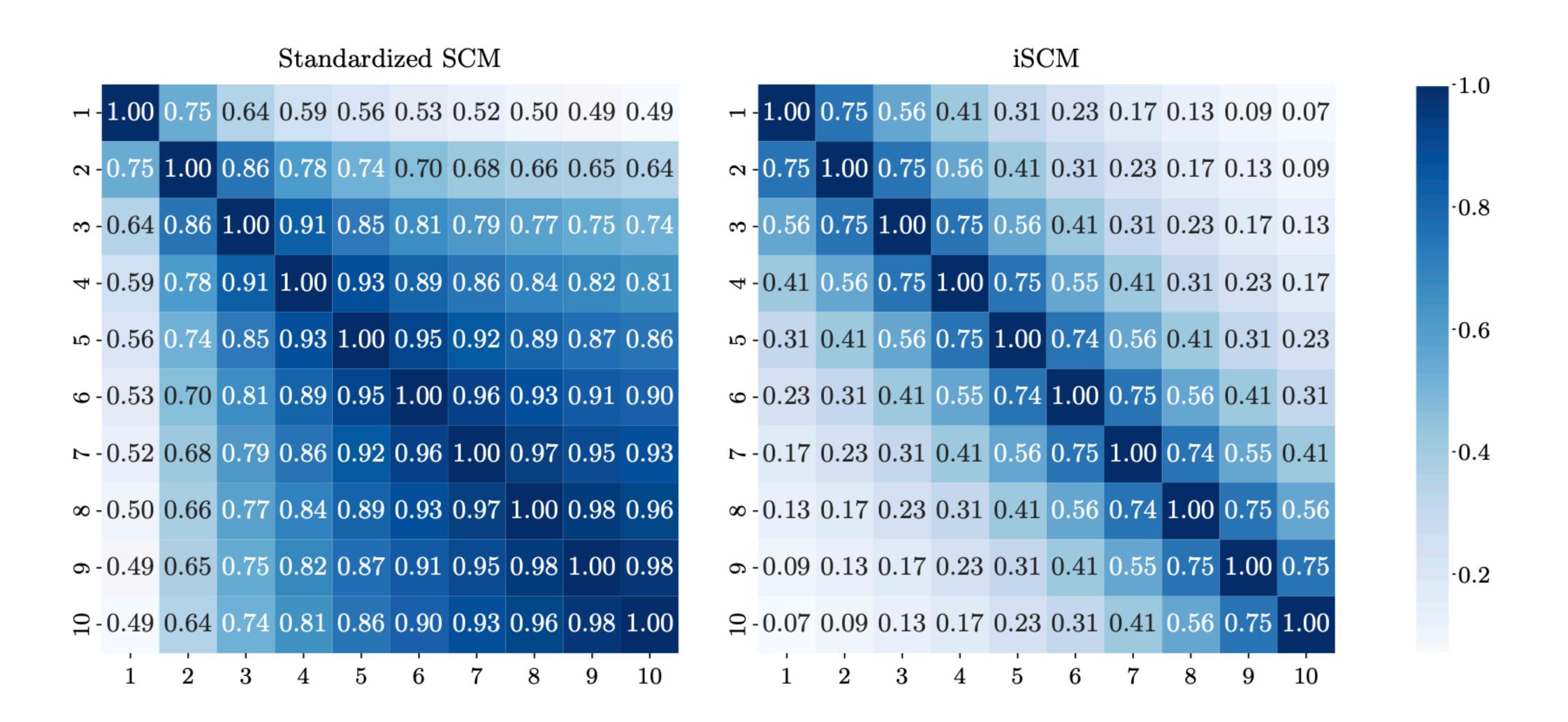
return
$$[\widetilde{x}_1,\ldots,\widetilde{x}_d]$$

$$\triangleright \in \mathbb{R}^d$$



 $|\rho|$: 0.75 0.75 0.75

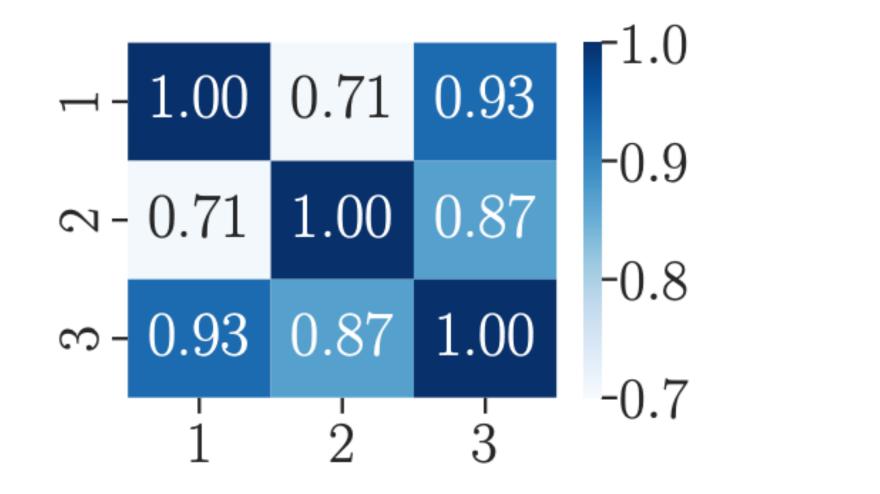
iSCMs (Partially) Remove the Sortability by Correlation

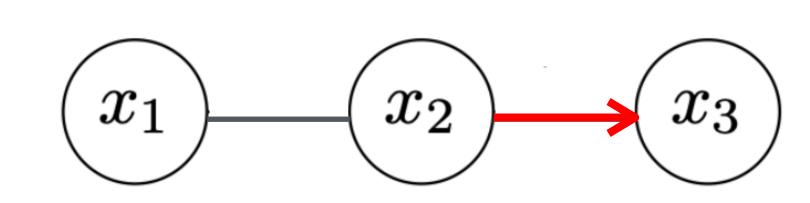


Results

Linear Gaussian stand. SCMs Are Partially Identifiable

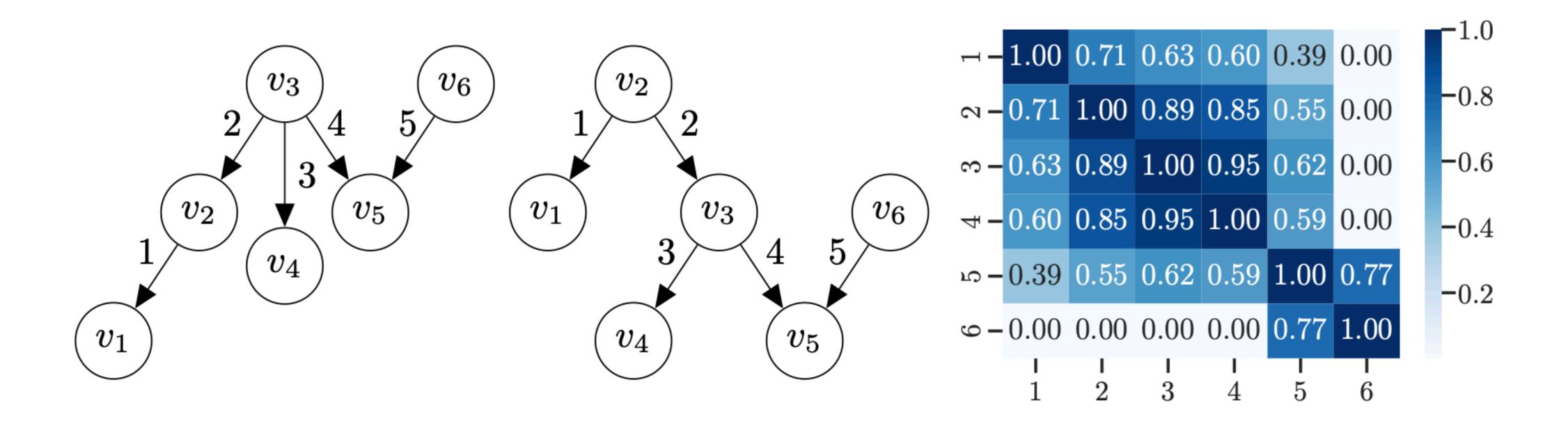
Theorem 3 (Partial identifiability of standardized linear SCMs with forest DAGs). Let $\mathbf{x}^{\mathbf{s}}$ be modeled by a standardized linear SCM (1) with forest DAG \mathcal{G} , additive noise of equal variances $\operatorname{Var}[\varepsilon_i] = \sigma^2$, and $|w_{i,j}| > 1$ for all $i \in pa(j)$. Then, given $p(\mathbf{x}^{\mathbf{s}})$ and the partially directed graph $\tilde{\mathcal{G}}$ representing the MEC of \mathcal{G} , we can identify all but at most one edge of the true DAG \mathcal{G} in each undirected connected component of the MEC $\tilde{\mathcal{G}}$.



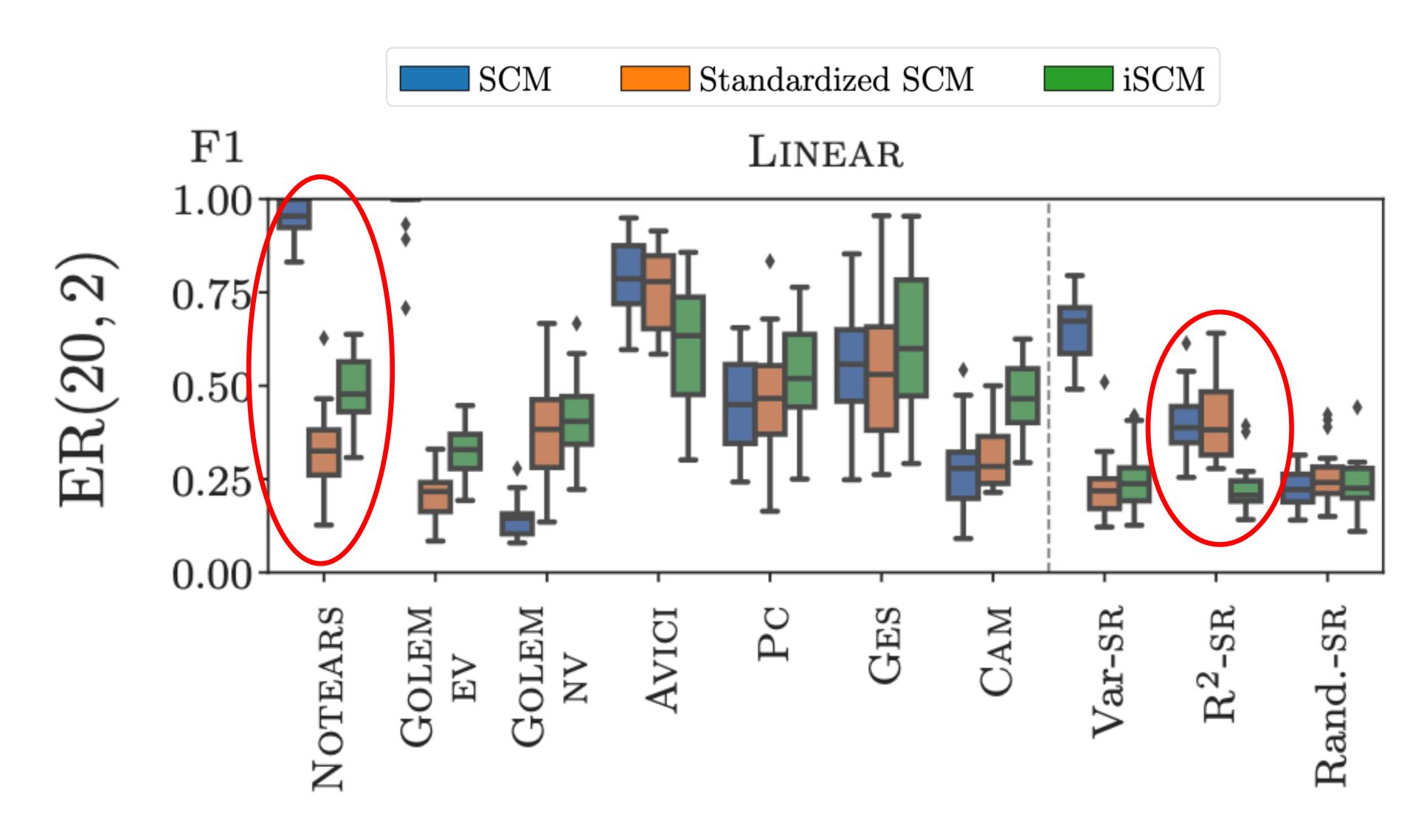


Linear Gaussian iSCMs Are Not Identifiable

Theorem 4 (Nonidentifiability of linear Gaussian iSCMs with forest DAGs). Let $\tilde{\mathbf{x}}$ be modeled by a linear iSCM (1) with forest DAG \mathcal{G} and additive Gaussian noise of equal variances $\mathrm{Var}[\varepsilon_i]$. Then, for every DAG \mathcal{G}' in the MEC of \mathcal{G} , there exists a linear iSCM with DAG \mathcal{G}' that has the same observational distribution as $\tilde{\mathbf{x}}$, the same noise variances, and the same weights on the corresponding edges in the MEC.



Numerical Results



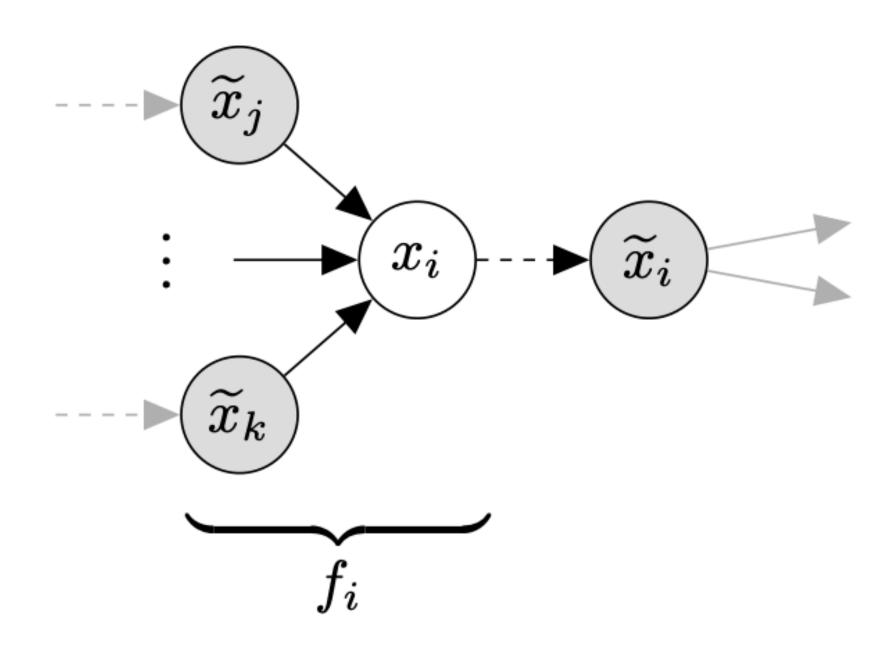
Summary

We propose a simple modification of SCMs that stabilizes the data-generating process and thereby removes exploitable covariance artifacts.

In the paper you will find:

- theoretical analysis of linear iSCMs
- empirical verification of ${f R}^2$ sortability properties
- benchmark of popular causal discovery methods (linear + nonlinear)

Thank you!



Standardizing Structural Causal Models

Weronika Ormaniec

Scott Sussex

Lars Lorch

Bernhard Schölkopf

Andreas Krause

Contact: <u>wormaniec@ethz.ch</u>