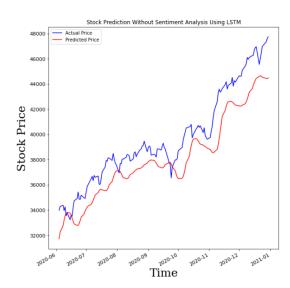
Wasserstein-regularized Conformal Prediction under General Distribution Shift

Rui Xu¹, Chao Chen², Yue Sun³, Parvathinathan Venkitasubramaniam³, Sihong Xie¹

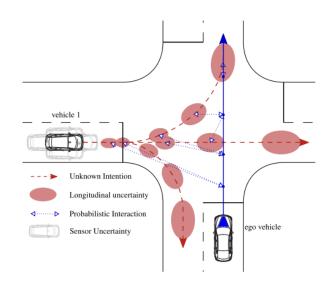
The Hong Kong University of Science and Technology (Guangzhou), HKUST(GZ)
 Harbin Institute of Technology, HIT
 Lehigh University

Background: Uncertainty Quantification

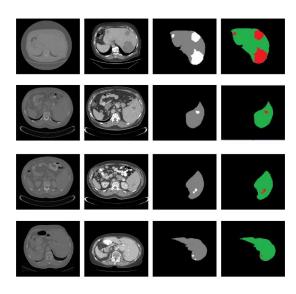
It is necessary to consider prediction uncertainty to be aware of potential risks in high-stake fields.



Fintech: Stock Forecasting [1]



Auto-driving Path Planning [2]



Medicine Image Segment [3]

^[1] Kasture, P., and K. Shirsath. "Enhancing Stock Market Prediction: A Hybrid RNN-LSTM Framework with Sentiment Analysis." Indian Journal of Science and Technology 17.18 (2024): 1880-1888.

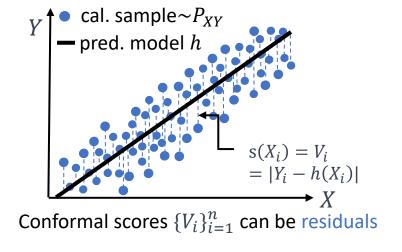
^[2] Hubmann, Constantin, et al. "Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction." IEEE transactions on intelligent vehicles 3.1(2018).

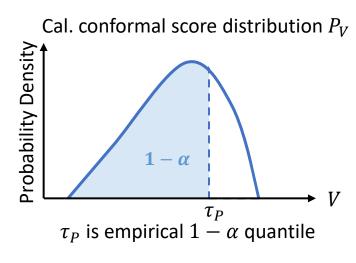
^[3] Alalwan, Nasser, et al. "Efficient 3D deep learning model for medical image semantic segmentation." Alexandria Engineering Journal 60.1 (2021): 1231-1239.

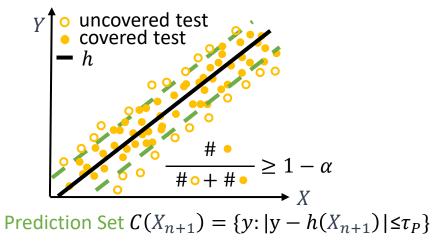
Background: Conformal Prediction

Conformal Prediction (CP) uses calibration samples $\{(X_i, Y_i)\}_{i=1}^n$ to output a prediction set of independent and identically distributed (i.i.d.) test sample (X_{n+1}, Y_{n+1}) with a $1 - \alpha$ coverage guarantee:

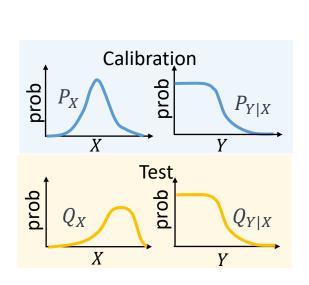
$$\Pr(Y_{n+1} \in C(X_{n+1})) \in \left[1 - \alpha, 1 - \alpha + \frac{1}{n+1}\right).$$

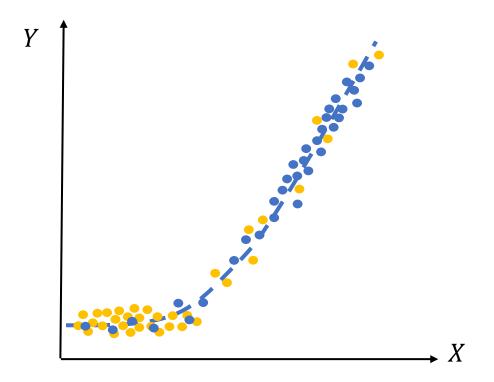






Covariate shift $(P_X \neq Q_X, P_{Y|X} = Q_{Y|X})$

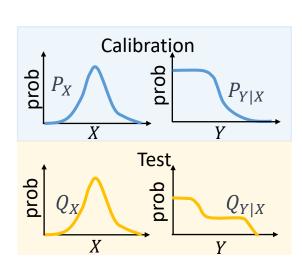


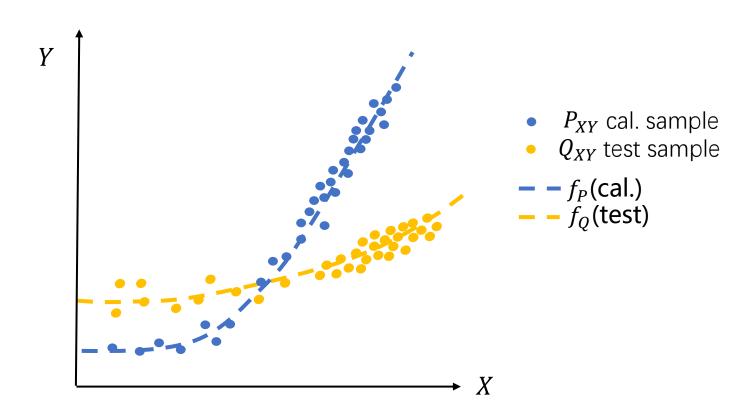


- P_{XY} cal. sample
- Q_{XY} test sample

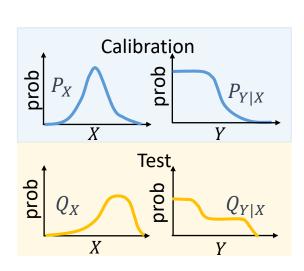
$$- - f_P(\text{cal.}) = f_Q(\text{test})$$

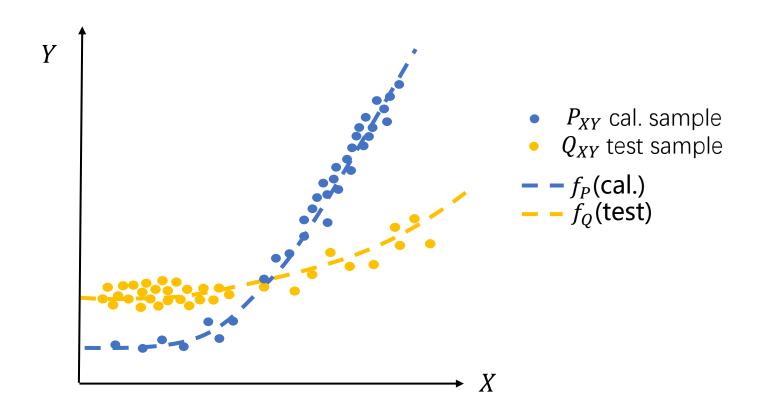
Concept shift $(P_X = Q_X, P_{Y|X} \neq Q_{Y|X})$





Joint distribution shift $(P_X = Q_X, P_{Y|X} \neq Q_{Y|X})$

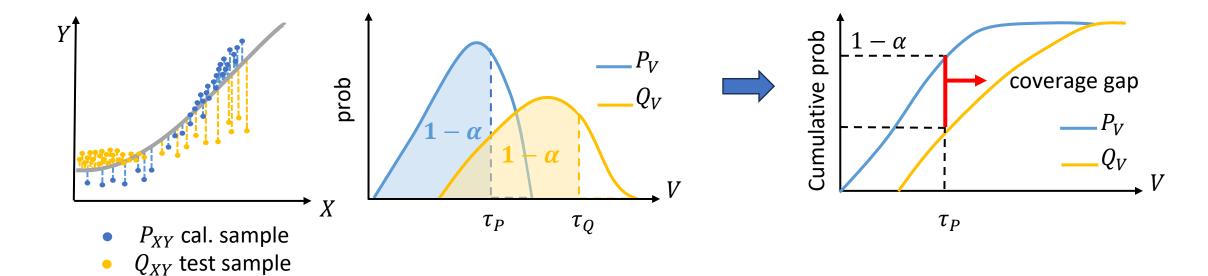




Pred. model *h*

Calibration and test conformal score distributions, P_V and Q_V , are different.

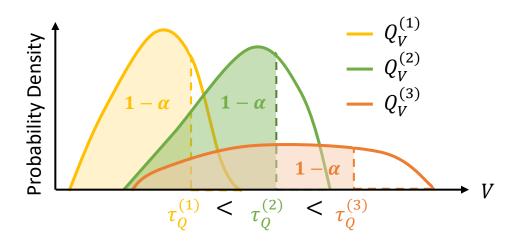
Coverage guarantee does not hold.



Challenge: Prediction Inefficiency

Existing worst-case (WC) solutions for robust coverage make prediction set $C(X_{n+1})$ excessively large [4,5,6], which are less informative to locate the true label.

Potential test conformal score distributions



 $C(X_{n+1}) = \{y: |y - h(X_{n+1})| \le \tau_0^{(3)}\}$ is unnecessarily large for test samples from $Q_{XY}^{(1)}$ and $Q_{XY}^{(2)}$.

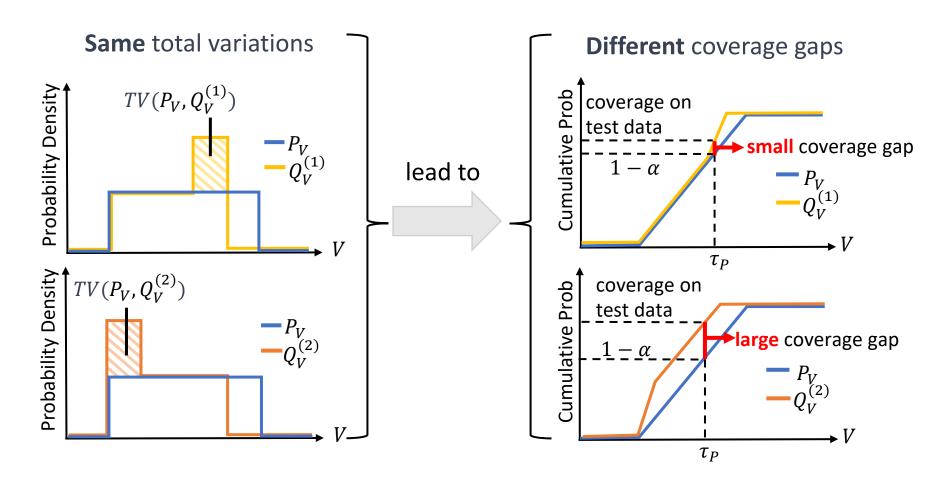
^[4] Gendler, Asaf, et al. "Adversarially robust conformal prediction." International Conference on Learning Representations. 2021.

^[5] Cauchois, Maxime, et al. "Robust validation: Confident predictions even when distributions shift." Journal of the American Statistical Association 119.548 (2024): 3033-3044.

^[6] Zou, Xin, and Weiwei Liu. "Coverage-guaranteed prediction sets for out-of-distribution data." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 15. 2024

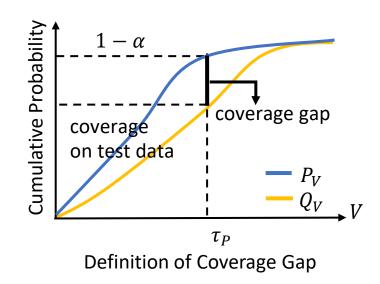
Challenge: Agnostic Distribution Divergence Location

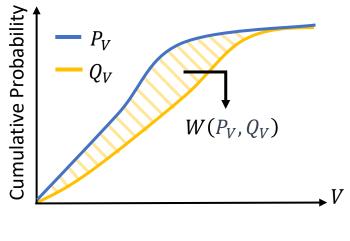
Total variation (TV) between calibration and test conformal score distributions, P_V and Q_V , fails to indicate coverage gap changes without knowing where two distributions diverge[7].



Method: Upper-bounding Coverage Gap by Wasserstein Distance

Wasserstein distance integrate coverage gap over *all* quantiles, consistently indicating coverage robustness.





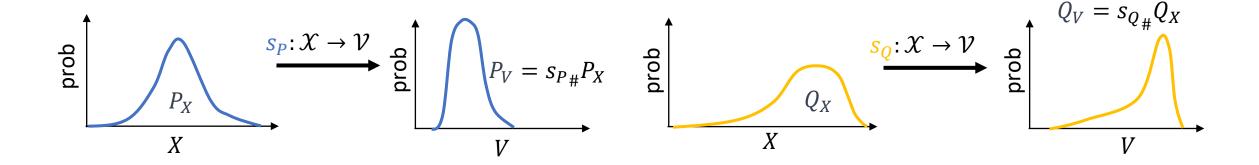
Wasserstein-1 Distance $W(P_V, Q_V)$

Given L the Lebesgue density bound of P_V , we derive that coverage gap $\leq \sqrt{2L \cdot W(P_V, Q_V)}$.

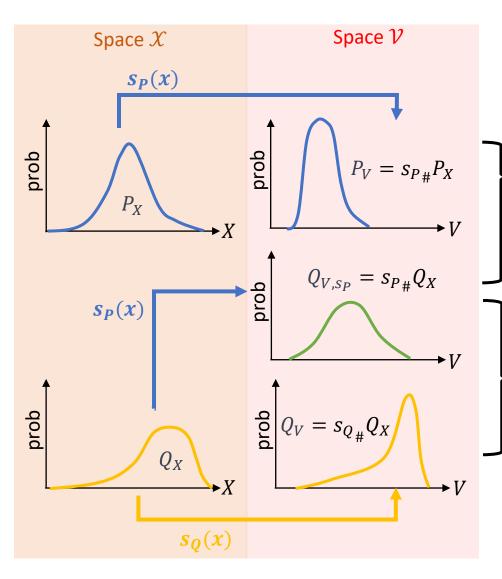
Method: Pushforward Measure

Pushforward measure helps explain how covariate and concept shifts result in $W(P_V, Q_V)$.

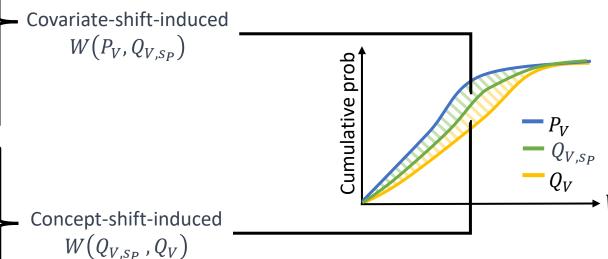
We denote $s_P(x) = |f_P(x) - h(x)|$ and $s_Q(x) = |f_Q(x) - h(x)|$.



Method: Wasserstein Distance Decomposition

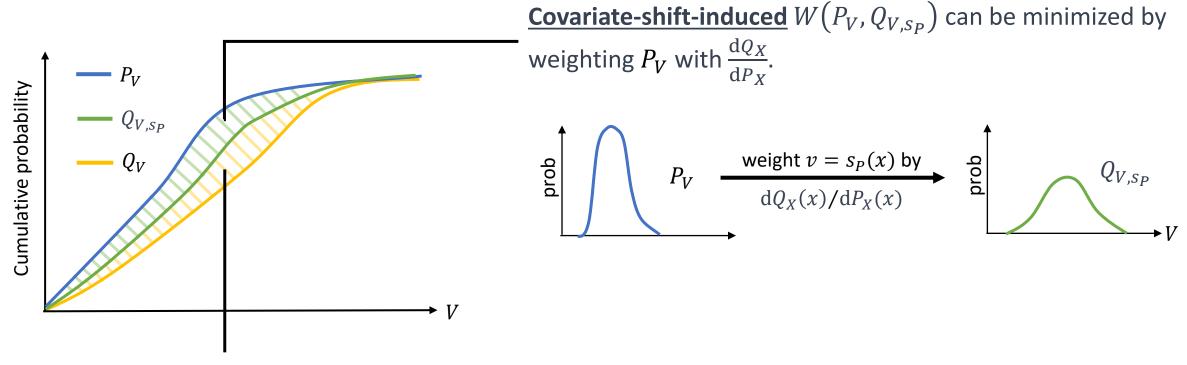


We quantify how the two components of joint distribution shift, namely covariate and concept shifts, impact $W(P_V, Q_V)$.



By triangular inequality, $W(P_V, Q_V) \leq W(P_V, Q_{V,S_P}) + W(Q_{V,S_P}, Q_V).$

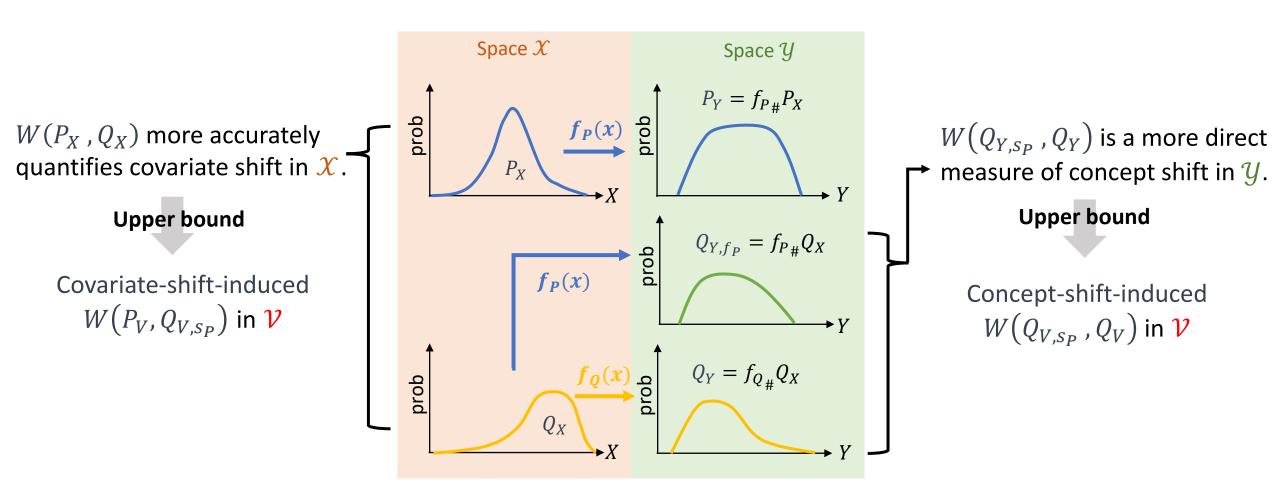
Method: Wasserstein Distance Minimization



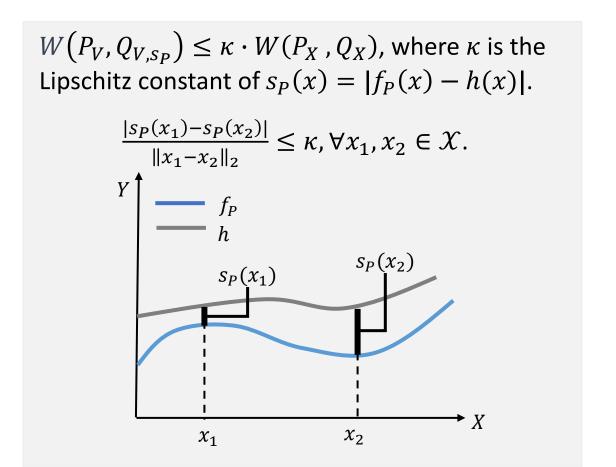
Concept-shift-induced $W(Q_{V,S_P}, Q_V)$ is minimized by Wasserstein-regularization of θ -parameterized prediction model h.

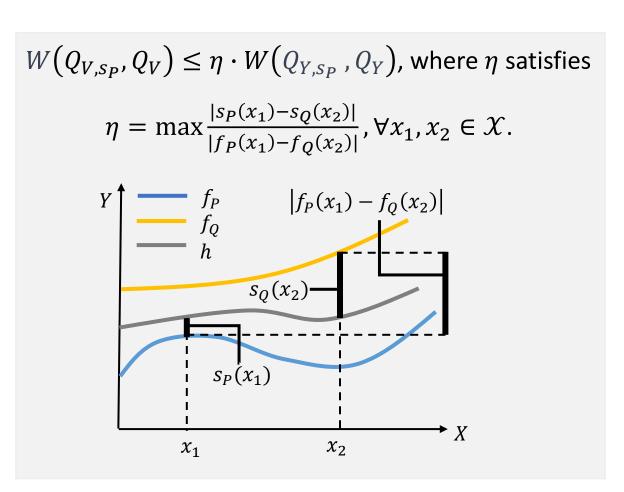
$$\min_{\theta} W(Q_{V,S_P}, Q_V)$$

Theory: Upper-Bounding Wasserstein Distance by Covariate and Concept Shifts



Theory: Upper-Bounding Wasserstein Distance by Covariate and Concept Shifts





By triangular inequality, $W(P_V, Q_V) \le \kappa \cdot W(P_X, Q_X) + \eta \cdot W(Q_{Y,S_P}, Q_Y)$.

Algorithm: Wasserstein-regularized Conformal Prediction (WR-CP)

distribution shift

Setup: CP under multi-source generalization:

- Training distributions $D_{XY}^{(i)}$ for $i=1,\ldots,k$.
- Calibration distribution P_{XY} is known.

Training distribution $D_{XY}^{(1)}$ Training distribution $D_{XY}^{(2)}$ Test distribution Q_{XY} Test distribution Q_{XY} Test distribution Q_{XY} The distribution Q_{X

• Test distribution $Q_{XY} \in \{\sum_{i=1}^k w_i D_{XY}^{(i)}: w_1, \dots, w_k \ge 0, \sum_{i=1}^k w_i = 1\}.$

Training:

- (1) Importance weighting: obtain $D_{V,s_P}^{(i)} = s_{P\#} D_X^{(i)}$ by weighting on P_V with $\frac{\mathrm{d} D_X^{(i)}}{\mathrm{d} P_X}$.
- (2) Regularized optimization: $\min_{\theta} \sum_{i=1}^k \mathbb{E}_{(x,y) \sim D_{XY}^{(i)}} [l(h_{\theta}(x),y)] + \beta \sum_{i=1}^k W(D_{V,S_P}^{(i)},D_V^{(i)}).$

Inference: Weight P_V with $\frac{\mathrm{d}Q_X}{\mathrm{d}P_X}$ to generate prediction sets.

Experiment: Setup

Datasets: (a) the airfoil self-noise dataset [8] (b) Seattle-loop[9], PeMSD4, PeMSD8 [10] for traffic speed prediction; (c) Japan-Prefectures, and U.S.-States [11] for epidemic spread forecasting.

Baselines and proposed method:

Category	Methods	Functionality		
Baseline	Vanilla CP [12]	Coverage guarantee under i.i.d. assumption		
	Importance weighted CP (IW-CP) [13]	Coverage guarantee under covariate shift		
	Conformalized Quantile Regression (CQR) [14]	Adaptive coverage under i.i.d. assumption		
	Worst-Case CP (WC-CP) [6,7,8]	Coverage guarantee under distribution shift, but leads to large prediction sets (inefficiency)		
Proposed	Wasserstein-regularized CP (WR-CP)	Robust coverage under distribution shift with small prediction sets (efficiency)		

^[8] Brooks, Thomas, D. Pope, and Michael Marcolini. "Airfoil Self-Noise." UCI Machine Learning Repository, 1989, https://doi.org/10.24432/C5VW2C.

^[9] Cui, Zhiyong, et al. "Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting." IEEE TITS 21.11 (2019): 4883-4894.

^[10] Guo, Shengnan, et al. "Attention based spatial-temporal graph convolutional networks for traffic flow forecasting." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

^[11] Deng, Songgaojun, et al. "Cola-GNN: Cross-location attention-based graph neural networks for long-term ILI prediction." Proceedings of the 29th ACM CIKM. 2020.

^[12] Papadopoulos, Harris, et al. "Inductive confidence machines for regression." Machine learning: ECML 2002: 13th European conference on machine learning Helsinki, Finland, August 19–23, 2002 proceedings 13. Springer Berlin Heidelberg, 2002.

^[13] Tibshirani, Ryan J., et al. "Conformal prediction under covariate shift." Advances in neural information processing systems 32 (2019).

^[14] Romano, Yaniv, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression." Advances in neural information processing systems 32 (2019).

Experiment: Correlation between Wasserstein Distance and Coverage Gap

Compared with total variation (TV) distance, Kullback-Leibler (KL)-divergence and expectation difference ($\Delta \mathbb{E}$), Wasserstein distance is an **effective** indicator of coverage gap with a **consistently high** Spearman's coefficient.

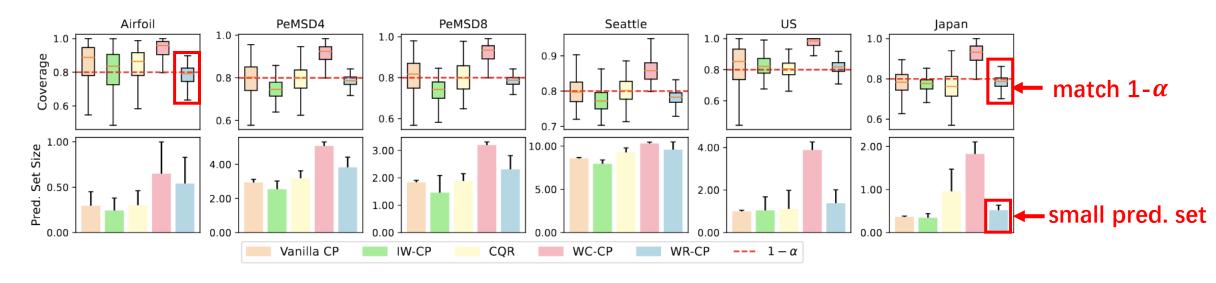
Spearman's coefficients between distance measures and the average coverage gap (The highest coefficient is bold, and the second-highest coefficient is underlined.)

Dataset	Airfoil	PeMSD4	PeMSD8	Seattle	U.S.	Japan	positive correlation
W	0.59 (0.24)	0.84 (0.03)	0.90 (0.03)	0.84 (0.05)	0.77 (0.06)	0.57 (0.05)	
TV	0.45 (0.16)	0.88 (0.03)	0.86 (0.06)	<u>0.75</u> (0.09)	0.67 (0.10)	0.37 (0.06)	
KL	0.40 (0.21)	0.49 (0.17)	0.51 (0.09)	0.45 (0.17)	0.60 (0.11)	0.53 (0.05)	
$\Delta \mathbb{E}$	<u>0.55</u> (0.19)	0.78 (0.05)	0.85 (0.04)	0.71 (0.06)	0.68 (0.08)	0.37 (0.09)	

Wasserstein distance integrates the vertical gap between two cumulative probability distributions overall *all* quantiles, and is sensitive to coverage gap changes at *any* quantile.

Experiment: Robust and Efficient Prediction Sets by WR-CP

As the Wasserstein distance between calibration and test conformal scores is minimized, WR-CP achieves robust coverage under distribution shift. As a result, WR-CP makes coverages on test data more concentrated around $1-\alpha$ level compared to vanilla CP, IW-CP, and CQR.

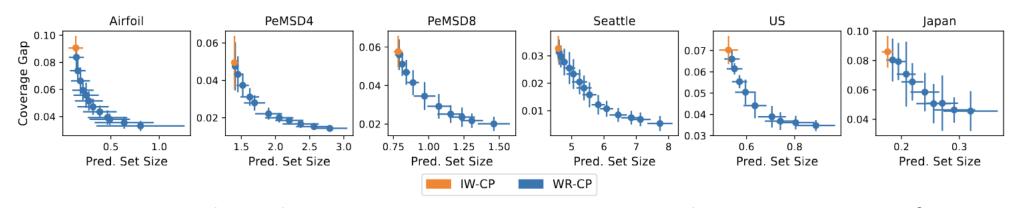


Coverages and prediction set sizes of WR-CP and baselines with $1-\alpha~=~0.8$.

While WC-CP also ensures coverage guarantees, it leads to inefficient predictions due to large set sizes, whereas WR-CP mitigates this inefficiency. Yet, due to regularization, WR-CP may lead to larger prediction sets than CP methods based on empirical risk minimization, such as vanilla CP, IW-CP, and CQR.

Experiment: Ablation Study with Various β Values

WR-CP effectively balances conformal prediction accuracy and efficiency, providing a flexible and customizable solution. When $\beta=0$, WR-CP returns to IW-CP.



Pareto fronts of coverage gap and prediction set size obtained from WR-CP with varying β .

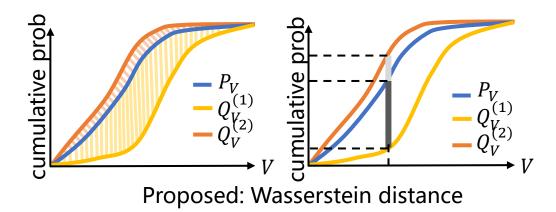
As β increases, model h_{θ} prioritizes minimizing the Wasserstein distance, resulting in a smaller coverage gap. However, the regularization term inevitably impacts prediction accuracy, leading to larger prediction set sizes.

Conclusion

• Wasserstein distance captures coverage gap and enhances interpretability of gap variations across various confidence level $1-\alpha$.

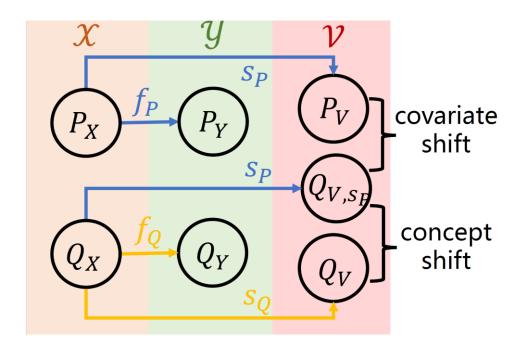


Prior: Total variation distance



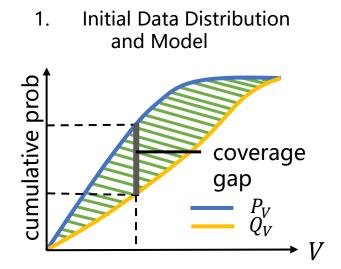
Conclusion

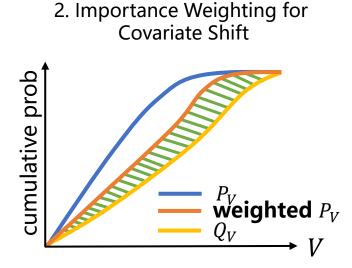
• We disentangle how covariate shift (input distribution changes) and concept shift (labeling function changes) independently impact coverage gaps.

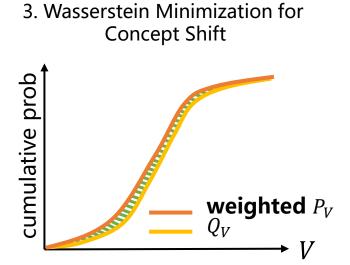


Conclusion

 A novel method, WR-CP, combining importance weighting and representation learning regularization is proposed to optimize and balance prediction set accuracy and efficiency.







Sihong XIE
Associate Professor

Rui XU
PhD Student

Code Repository github.com/rxu0112/WR-CP

Thank you

