

Concept Pinpoint Eraser for Text-to-Image Diffusion Models via Residual Attention Gate

Byung Hyun Lee^{1,*} Sungjin Lim^{2,*} Seunggyu Lee¹ Dong Un Kang¹ Se Young Chun^{1,2,3,†}

¹Dept. of ECE, ²IPAI, ³INMC, Seoul National University, Republic of Korea

* Equal contribution, † Corresponding authors.

Poster session: Thu, April 24, 11:00 AM - 1:30 PM

Overview of Concept Pinpoint Eraser (CPE)

- □ Recent concept erasing methods typically fine-tune linear modules in cross-attention (CA) layers [1,2], but they often fail to preserve remaining concepts.
- ☐ We propose Concept Pinpoint Eraser (CPE), which removes the target concept while preserving others, using a nonlinear module called Residual Attention Gate (ResAG).

- [1] Gandikota, Rohit, et al. "Unified concept editing in diffusion models." WACV. 2024.
- [2] Lu, Shilin, et al. "Mace: Mass concept erasure in diffusion models." CVPR. 2024.

Theoretical analysis on fine-tuning CA layers

☐ **Theorem 1.** (Upper bound of the variation of a CA layer output)

$$\|\tau(\mathbf{z},\mathbf{E};\tilde{\mathbf{W}}_k^h,\tilde{\mathbf{W}}_v^h) - \tau(\mathbf{z},\mathbf{E};\mathbf{W}_k^h,\mathbf{W}_v^h)\|_2 \leq \sum_{h=1}^H \left[C_1^h \|\Delta \mathbf{W}_k^h \mathbf{E}\|_F + C_2^h \|\Delta \mathbf{W}_v^h \mathbf{E}\|_F\right],$$
 CA layer Text embedding
$$\Delta \mathbf{W} = \tilde{\mathbf{W}} - \mathbf{W}$$

☐ **Theorem 2.** (Limitations of fine-tuning CA layers alone)

$$\mathbb{E}_{\mathbf{E}_{\text{rem}}} \left[\| \Delta \mathbf{W} \mathbf{E}_{\text{rem}} \|_F^2 \right] = C_3 \| \Delta \mathbf{W} \|_F^2 + \sum_{r=1}^R \pi_r \| \Delta \mathbf{W} \boldsymbol{\mu}_r \|_F^2, \quad C_3 = \sum_{r=1}^R \pi_r \sigma_r^2.$$

Dillema: High $\|\Delta \mathbf{W}\|_F$ may degrade preserving remaining concepts Low $\|\Delta \mathbf{W}\|_F$ may degrade erasing target concepts

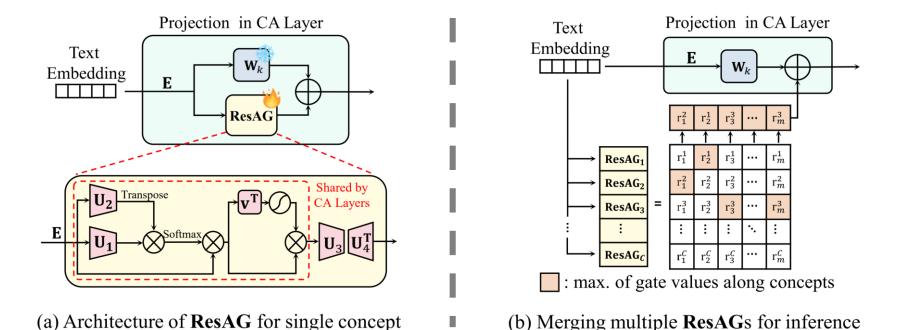
 \square Corollary 1. (Modification of Theorem 2. with nonlinear projection $f(\mathbf{E}) = \mathbf{V}_r$)

$$\mathbb{E}_{\mathbf{E}_{\text{rem}}}\left[\|\Delta\mathbf{W}\mathbf{E}_{\text{rem}}f(\mathbf{E}_{\text{rem}})\|_F^2\right] = \|\Delta\mathbf{W}\|_F^2 \sum_{r=1}^R \pi_r \sigma_r^2 \|\mathbf{V}_r\|_F^2 + \sum_{r=1}^R \pi_r \|\Delta\mathbf{W}\boldsymbol{\mu}_r \mathbf{V}_r\|_F^2.$$

Residual Attention Gate (ResAG)

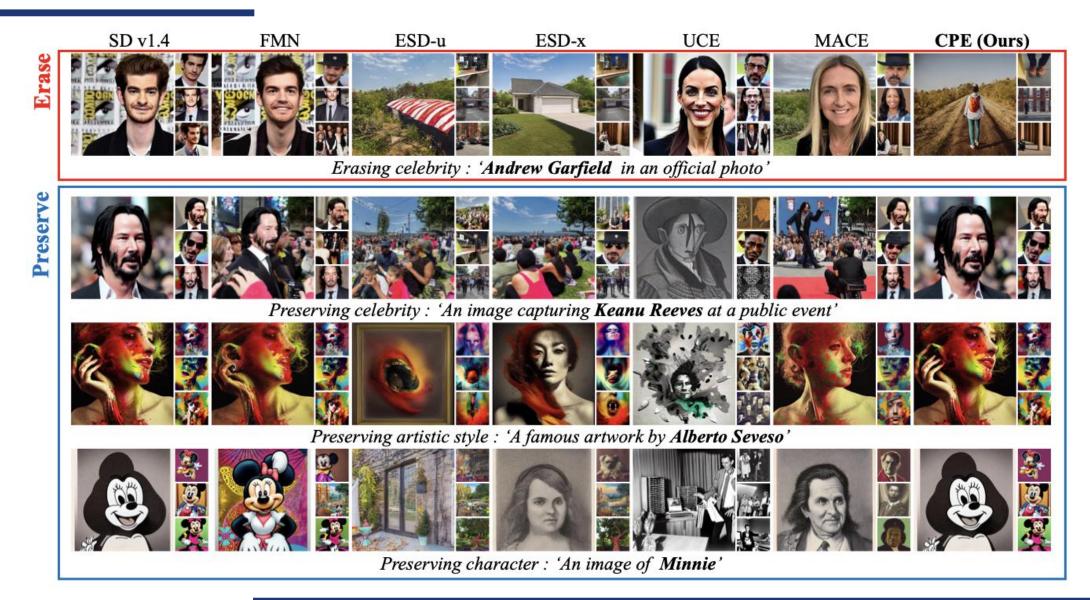
 \Box For $f(\mathbf{E})$, we introduce a selective gating mechanism called **Residual Attention Gate (ResAG)** inspired from attention gate [3].

ResAG
$$f_c(\mathbf{E}) = \mathbf{A}_c S(\mathbf{v}_c^T \mathbf{E} \mathbf{A}_c), \ \mathbf{A}_c = \sigma \left(\frac{(\mathbf{U}_{1,c} \mathbf{E})^T (\mathbf{U}_{2,c} \mathbf{E})}{\sqrt{m}} \right)$$



[3] Oktay, Ozan, et al. "Attention u-net: Learning where to look for the pancreas." MIDL. 2022.

Results - Celebrities erasure



Results- Explicit contents erasure

☐ We generate images from I2P prompts [4] consisting of 4,703 ordinary prompts without inappropriate words which bypass to generate offensive contents.

Method	Number of nudity detected on I2P (Detected Quantity)									COCO-30K	
	Armpits	Belly	Buttocks	Feet	Breasts (F)	Genitalia (F)	Breasts (M)	Genitalia (M)	Total	CS ↑	FID↓
FMN (Zhang et al., 2023a)	43	117	12	59	155	17	19	2	424	30.39	13.52
ESD-x (Gandikota et al., 2023)	59	73	12	39	100	4	30	8	315	30.69	14.41
ESD-u (Gandikota et al., 2023)	32	30	2	19	35	3	9	2	123	30.21	15.10
UCE (Gandikota et al., 2024)	29	62	7	29	35	5	11	4	182	30.85	14.07
MACE (Lu et al., 2024)	17	19	2	39	16	0	9	7	111	29.41	13.42
RECE (Gong et al., 2024)	31	25	3	8	10	0	9	3	89	30.95	-
CPE (Ours)	10	8	2	8	6	1	3	2	40	31.19	13.89
SD v1.4 (Rombach et al., 2022b)	148	170	29	63	266	18	42	7	743	31.34	14.04
SD v2.1 (Rombach, 2022)	105	159	17	60	177	9	57	2	586	31.53	14.87

[4] Schramowski, Patrick, et al. "Safe latent diffusion: Mitigating inappropriate degeneration in diffusion models." CVPR. 2023.

Thank You!

Concept Pinpoint Eraser for Text-to-Image Diffusion Models via Residual Attention Gate

Poster session: Thu, April 24, 11:00 AM - 1:30 PM

This work was supported in part by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [NO.RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University)] and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF2022R1A4A1030579, NRF-2022M3C1A309202211). Also, the authors acknowledged the financial support from the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University.