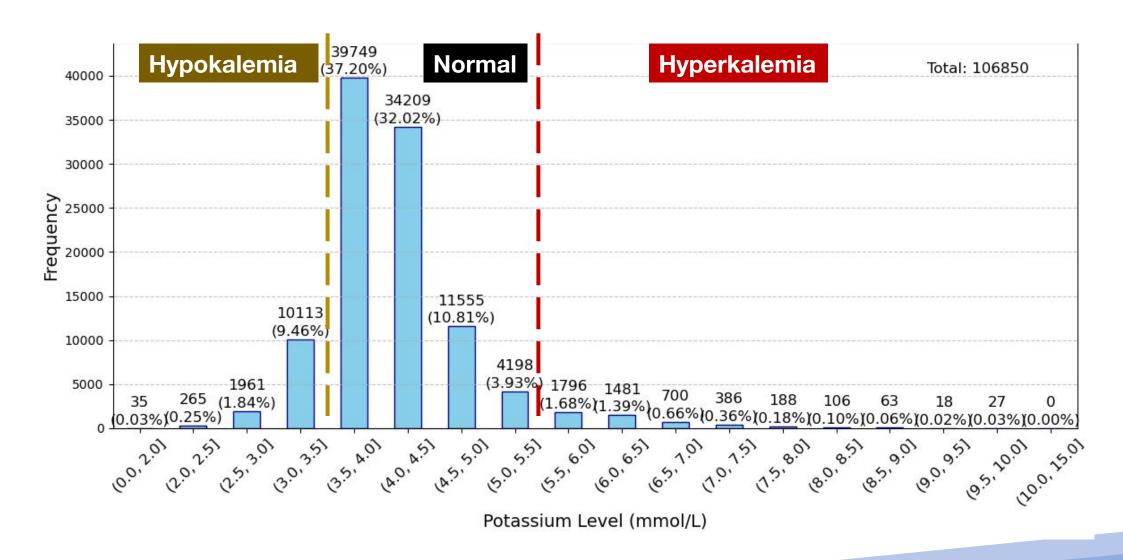
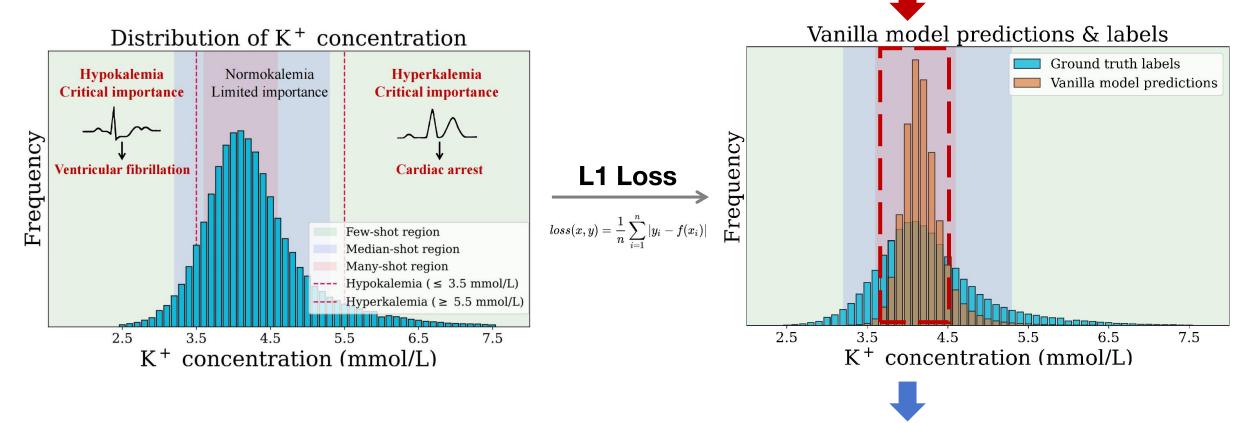


Dist Loss: Enhancing Regression in Few-Shot Region Through Distribution Distance Constraint


Guangkun Nie, Gongzheng Tang, Shenda Hong Peking University

Definition of deep imbalanced regression (DIR)

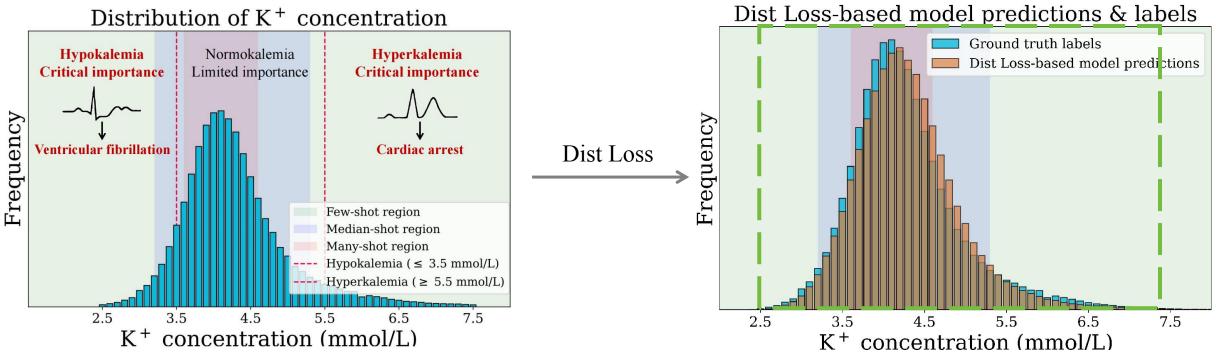
Learning from imbalanced data with continuous targets, tackling potential missing data in certain regions, and generalizing to the entire target range.



Real-world case study: DIR of blood potassium (K+) levels

Motivation of Dist Loss

Significant distribution discrepancy between the labels and predictions



Mitigating such distribution descrepancy between the labels and predictions

Performance of Dist Loss

A much smaller distribution discrepancy between the labels and predictions

Dist Loss = Sample-level Loss + Distribution-level loss

Sample-level loss: precise

sample-level prediction

Distribution-level loss: regularizes model outputs to prevent few-shot samples (edges) from shifting toward many-shot regions (center)

Dist Loss = Sample-level Loss + Distribution-level loss

Sample-level loss: precise

sample-level prediction

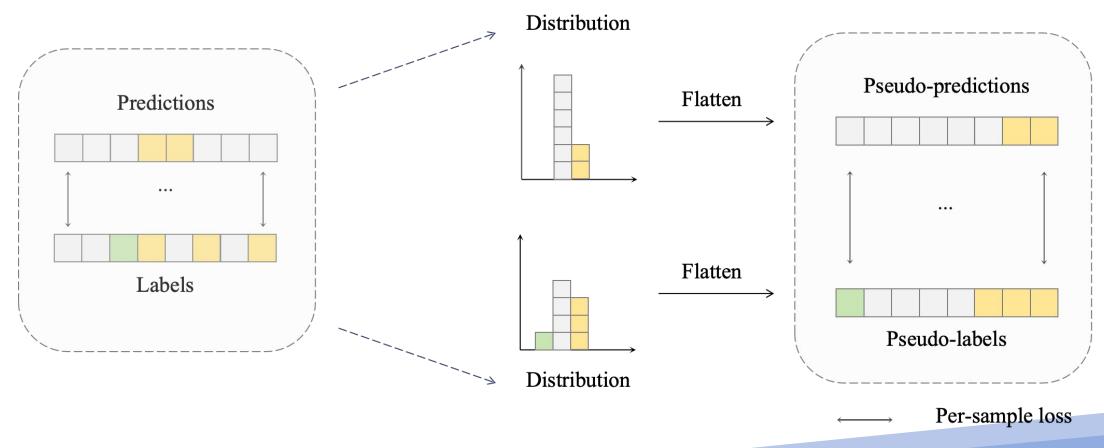
Can be any loss designed to reduce sample-level prediction error, such as L1 and L2 loss.

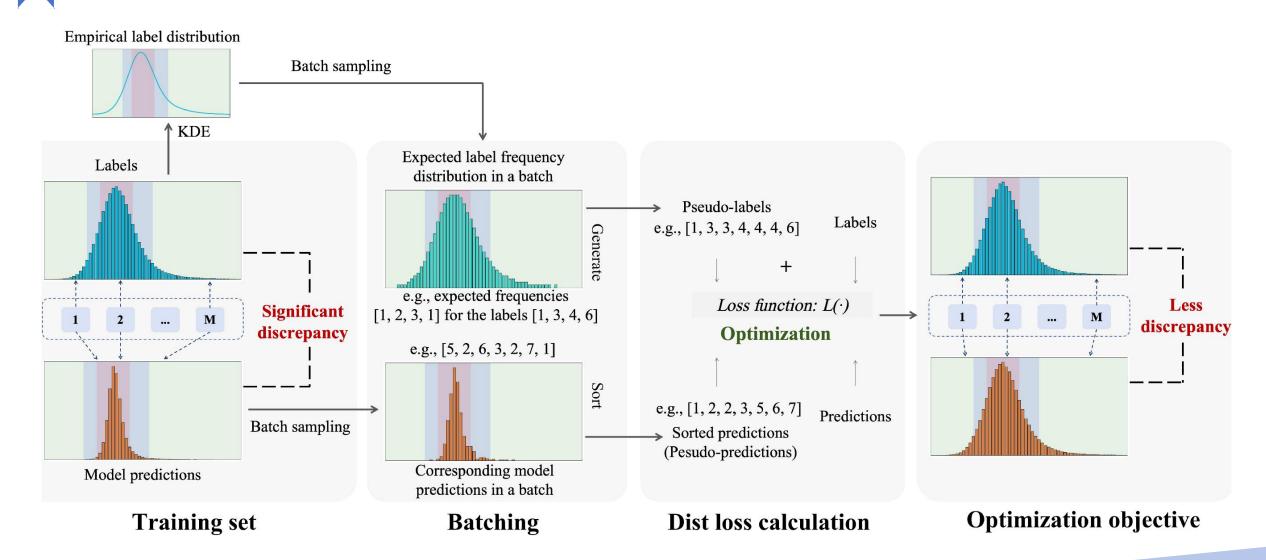
Dist Loss = Sample-level Loss + Distribution-level loss

Distribution-level loss: regularizes model outputs to prevent few-shot samples (edges) from shifting toward many-shot regions (center)

How to achieve this? KL divergence or other methods?

Dist Loss = Sample-level Loss + Distribution-level loss

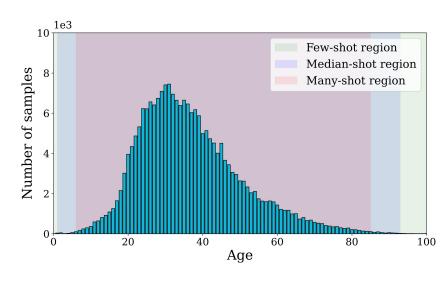


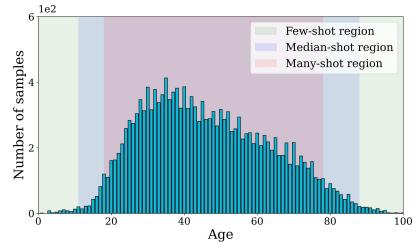

No, not differentiable in regression

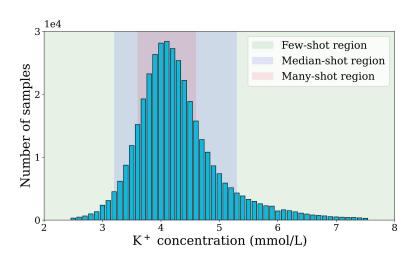
How to achieve this? KL divergence or other methods?

How to design a differentiable distribution-level loss?

Dist Loss = Sample-level Loss + Distribution-level loss


What does Dist Loss do exactly




Simultaneously optimizing sample-level prediction error and distribution-level discrepancy.

Benchmarks

Both validation and test sets are balanced

IMDB-WIKI-DIR

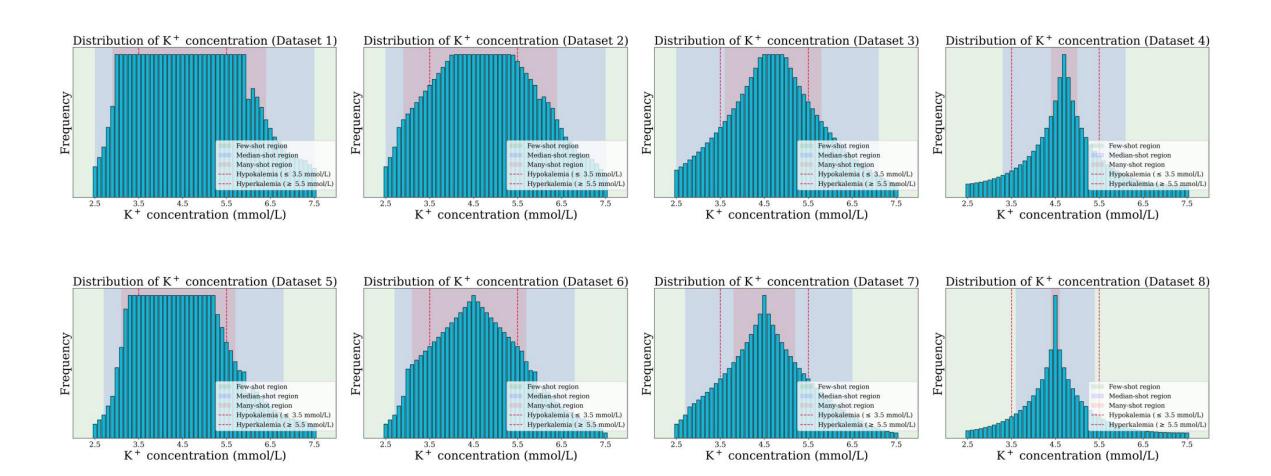
- 191,509 training samples
- 11,022 validation samples
- 11,022 testing samples

AgeDB-DIR

- 12,208 training samples
- 2,140 validation samples
- 2,140 testing samples

ECG-K-DIR

- 365,549 training samples
- 5,098 validation samples
- 5,098 testing samples


Baselines

- LDS^[1]: Label Distribution Smoothing
- FDS^[1]: Feature Distribution Smoothing
- RankSim^[2]: Ranking Similarity
- ConR^[3]: Contrastive Regularizer
- Balanced MSE^[4]: Balanced Mean Squared Error

- [1]. Yang, Y., et al. (2021). Delving into deep imbalanced regression. International Conference on Machine Learning (ICML), PMLR.
- [2]. Gong, Y., et al. (2022). RankSim: Ranking similarity regularization for deep imbalanced regression. International Conference on Machine Learning (ICML), PMLR.
- [3]. Keramati, M., et al. (2024). ConR: Contrastive regularizer for deep imbalanced regression. International Conference on Learning Representations (ICLR).

	MAE			GM			
	IMDB-WIKI-DIR	AgeDB-DIR	ECG-K-DIR	IMDB-WIKI-DIR	AgeDB-DIR	ECG-K-DIR	
Vanilla	26.930	12.894	1.771	21.254	9.789	1.578	
+ LDS	22.753	11.279	1.510	12.803	7.846	1.190	
+ FDS	24.908	11.161	1.737	14.361	7.361	1.529	
+ Ranksim	25.999	12.569	1.791	19.690	9.495	1.600	
+ ConR	25.408	12.623	1.756	17.022	8.787	1.556	
+ Balanced MSE	23.542	9.613	1.417	12.603	6.248	1.046	
+ Dist Loss (Ours)	22.550	9.122	1.329	14.288	5.453	0.978	
Ours vs. Vanilla	+ 4.380	+ 3.772	+ 0.442	+ 6.966	+ 4.336	+ 0.600	
Ours vs. LDS	+ 0.203	+ 2.157	+0.181	- 1.485	+2.393	+ 0.212	
Ours vs. FDS	+ 2.358	+2.039	+0.408	+0.073	+1.908	+ 0.551	
Ours vs. Ranksim	+ 3.449	+ 3.447	+ 0.462	+ 5.402	+ 4.042	+ 0.622	
Ours vs. ConR	+ 2.858	+ 3.501	+0.427	+ 2.734	+ 3.334	+ 0.578	
Ours vs. Balanced MSE	+0.992	+0.491	+ 0.088	- 1.685	+0.795	+0.068	

	MAE			GM			
	IMDB-WIKI-DIR	AgeDB-DIR	ECG-K-DIR	IMDB-WIKI-DIR	AgeDB-DIR	ECG-K-DIR	
+ LDS	22.753	11.279	1.510	12.803	7.846	1.190	
+ LDS + Dist Loss	22.331	10.437	1.325	13.021	7.051	0.957	
+ FDS	24.908	11.161	1.737	14.361	7.361	1.529	
+ FDS + Dist Loss	24.112	10.444	1.428	14.929	6.696	1.099	
+ Ranksim	25.999	12.569	1.791	19.690	9.495	1.600	
+ Ranksim + Dist Loss	23.772	12.102	1.325	15.422	8.515	0.970	
+ ConR	25.408	12.623	1.756	17.022	8.787	1.556	
+ ConR + Dist Loss	22.700	12.303	1.336	14.713	9.123	0.987	
+ Balanced MSE	23.542	9.613	1.417	12.603	6.248	1.046	
+ Balanced MSE + Dist Loss	22.597	9.110	1.357	14.238	5.585	0.996	

	MAE							
Methods	Dataset 0	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5	Dataset 6	Dataset 7
Vanilla	2.701	2.676	2.658	1.979	2.679	2.647	2.624	1.888
LDS	2.684	2.703	2.642	1.962	2.672	2.507	2.644	1.901
FDS	1.865	2.368	2.191	1.790	2.223	2.625	1.908	1.665
Ranksim	2.470	2.327	2.273	1.831	2.314	2.192	2.258	1.725
ConR	2.461	2.343	2.308	1.828	2.193	2.274	2.255	1.742
Balanced MSE	1.997	1.984	1.981	1.831	1.906	1.863	1.815	1.708
Dist Loss	1.955	1.873	1.963	1.822	1.852	1.803	1.730	1.638

Thank you

Guangkun Nie, Gongzheng Tang, Shenda Hong Peking University

https://github.com/Ngk03/DIR-Dist-Loss

https://arxiv.org/pdf/2411.15216