

MOS: Model Synergy for Test-Time Adaptation on LiDAR-Based 3D Object Detection

Zhuoxiao Chen[†], Junjie Meng[†], Mahsa Baktashmotlagh[†], Yonggang Zhang[‡],
Zi (Helen) Huang[†], Yadan Luo[†]

[†]The University of Queensland, [‡]Hong Kong Baptist University

International Conference on Learning Representations (ICLR 2025 Oral)

3D Object Detection & Challenges

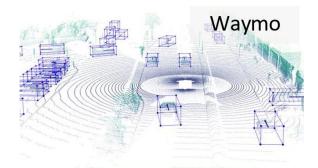
Goal: From LiDAR point clouds, output class-labelled 3D boxes.

Challenges: Domain shift – test data is different from training data, degrading the performance.

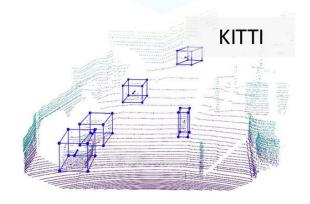


Cross-Dataset Shifts

- Shifted **Object Size**:
 - Average car length: 4.7m (Waymo) vs. 3.9m (KITTI)
- Shifted **Point Cloud Density**:
 - 64-beam (KITTI, Waymo) vs. 32-beam (nuScnenes)
- Shifted **Environment**:
 - Germany (KITTI) vs. USA (nuScenes) vs. Singapore (Waymo)

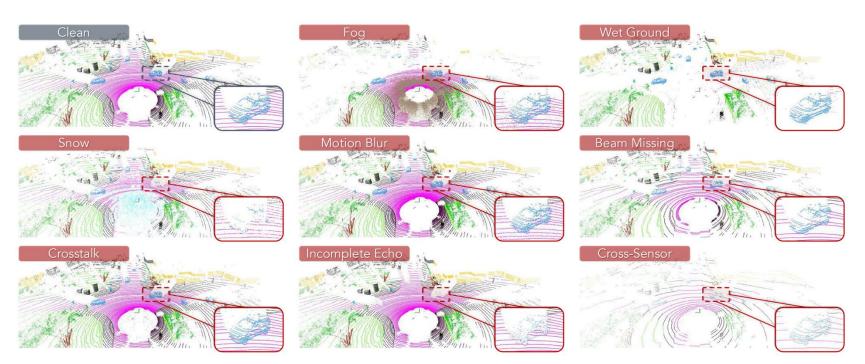


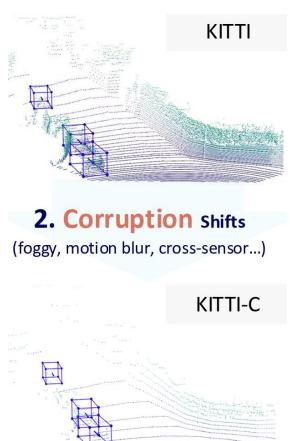
1. Cross-Dataset shifts (object sizes, beam numbers)



Corruption Shifts

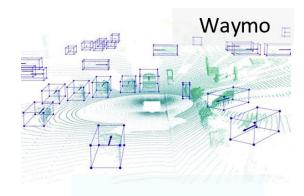
We follow Robo3D Benchmark (Kong, L., Et al.) to study **eight** types of corruptions, mainly caused by **severe weather** and **sensor failure**.



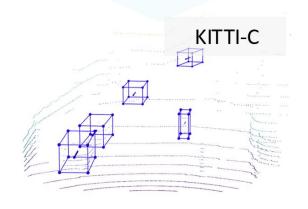


Cross-Corruption Shifts in 3D Object Detection

Question: what if a 3D detection system is deployed at a **new location** at the same time there is a **heavy snow**?

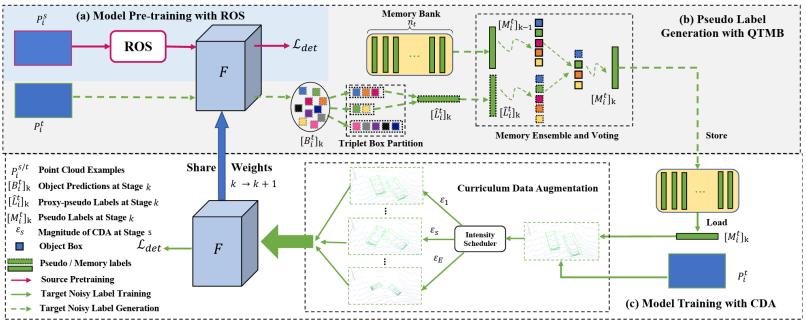


3. Cross-corruption Shifts (hybrid object & environmental shifts)



Existing Works – Unsupervised Domain Adaptation (UDA)

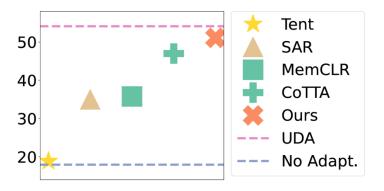
- UDA methods self-train the 3D detector offline for many epochs on the full target dataset.
- Question: what if the test domain changes dynamically (e.g. travelling to a new location, weather variations, sensor issues)?



ST3D (Yang, J., Et al.)

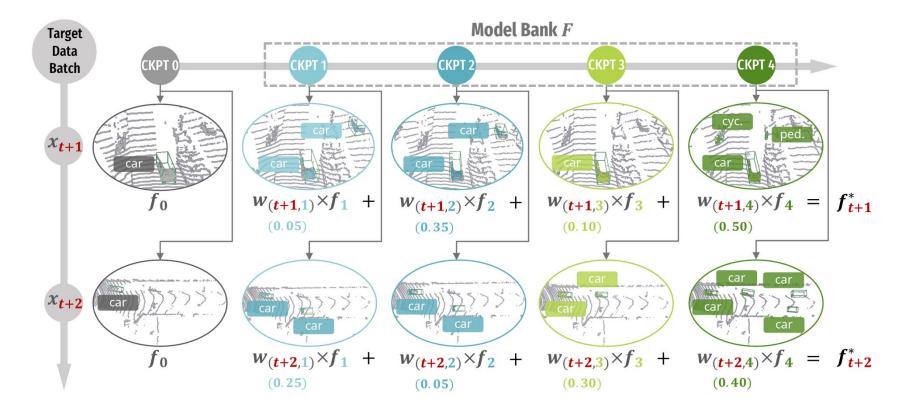
Test-Time Adaptation on 3D Object Detection

- On-the-fly model update per test sample.
- Mean-teacher variants (CoTTA (Wang, Q., Et al.) / MemCLR (VS, V., Et al.)) → less forgetting.
- Naively averaging all saved checkpoints → sub-optimal.
- Question: how to identify and reuse only the most informative checkpoints?



Model Synergy – Core Idea

- Identify checkpoints that best fit the current test batch, then assemble them.
- Minimize redundancy & focus on the unique knowledge.



Model Synergy – Compute Optimal Ensemble Weights

• **Goal**: build an on-the-fly "super-model" by weighting K saved checkpoints.

$$\mathbf{F}\mathbf{w} = f_t^*, \ \mathbf{w} = (\mathbf{F}^T\mathbf{F})^{-1}\mathbf{F}^Tf_t^* = (\mathbf{F}^T\mathbf{F})^{-1}\mathbb{1}^K$$

• Inverse of Generalized Gram Matrix: prioritize diverse checkpoints and minimize redundancy:

$$\mathbf{G} = \mathbf{F}^T \mathbf{F} = \left(\langle f_i, f_j
angle
ight)_{i,j=1}^K \in \mathbb{R}^{K imes K}, \ f_i, f_j \in \mathbf{F}$$

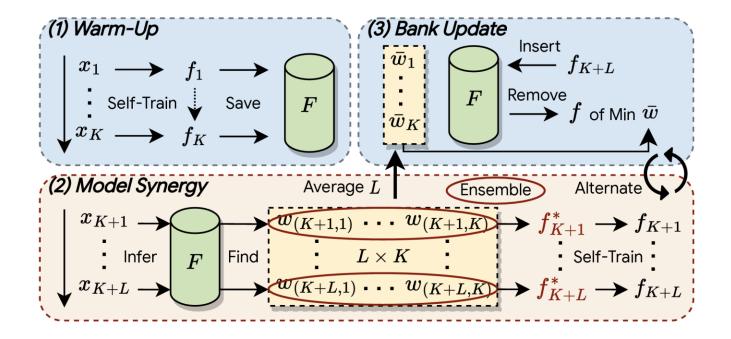
• Similarity Measure: compines reature overlap and pounding-pox agreement to gauge redundancy:

• The assembled
$$\tilde{\mathbf{w}} = (\mathbf{F}^T\mathbf{F})^{-1}\mathbb{1}^K = \tilde{\mathbf{G}}^{-1}\mathbb{1}^K, \ \tilde{\mathbf{G}} = \left(\mathbf{S}_{\mathsf{box}}\langle f_i, f_j \rangle \times \mathbf{S}_{\mathsf{feat}}\langle f_i, f_j \rangle\right)_{i,j=1}^K$$
 tation:

$$f_t^* = \sum_{i=1}^K w_i f_i, \; w_i \in ilde{\mathbf{w}}, f_i \in \mathbf{F}, \;\;\; \hat{\mathbf{B}}^t \leftarrow f_t^*(x_t), \; f_t \stackrel{\mathsf{train}}{\longleftarrow} \mathtt{aug}(x_t, \hat{\mathbf{B}}^t)$$

Model Synergy – Overall TTA Framework

- Phase 1 (Warm-up): self-train on initial batches → build a checkpoint bank.
- Phase 2 (Model Synergy): assemble the best checkpoints into one super model for self-training.
- Phase 3 (Bank Update): drop redundant models, add new ones, then repeat.



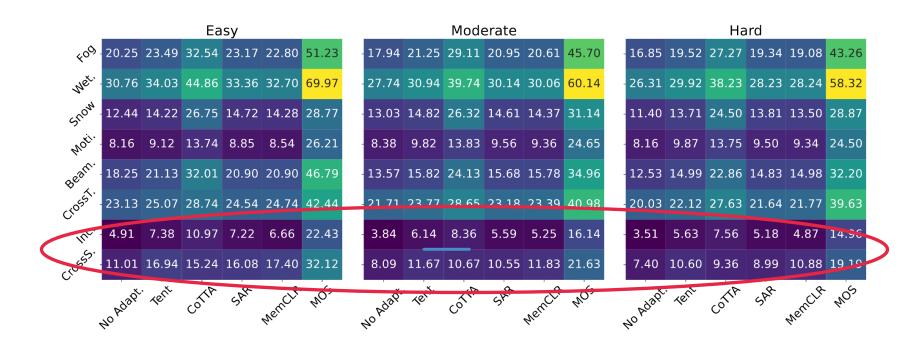
Experiments – Address Cross-Dataset Shift

- **Transfer Tasks**: Waymo → KITTI and nuScenes → KITTI.
- Outperform the best baseline by 81.6% in AP 3D.
- Achieve comparable or better performance than UDA methods.

Method	Venue	TTA	Waymo →KITTI		nuScenes →KITTI	
			AP _{BEV} / AP _{3D}	Closed Gap	AP _{BEV} / AP _{3D}	Closed Gap
No Adapt.	_	_	67.64 / 27.48	-	51.84 / 17.92	-
SN	CVPR'20	×	78.96 / 59.20	+72.33% / +69.00%	40.03 / 21.23	+37.55% / +5.96%
ST3D	CVPR'21	×	82.19 / 61.83	+92.97% / +74.72%	75.94 / 54.13	+76.63% / +65.21%
Oracle	-	-	83.29 / 73.45	-	83.29 / 73.45	-
Tent	ICLR'21	√	65.09 / 30.12	-16.29% / +5.74%	46.90 / 18.83	-15.71% / +1.64%
CoTTA	CVPR'22	✓	67.46 / 35.34	-1.15% / +17.10%	68.81 / 47.61	+53.96%/ +53.47%
SAR	ICLR'23	✓	65.81 / 30.39	-11.69% / +6.33%	61.34 / 35.74	+30.21% / +32.09%
MemCLR	WACV'23	✓	65.61 / 29.83	-12.97% / +5.11%	61.47 / 35.76	+30.62% / +32.13%
MOS	-	✓	81.90 / 64.16	+91.12% / +79.79%	71.13 / 51.11	+61.33% / +59.78%

Experiments – Address Cross-Corruption Shift

MOS lifts AP 3D on the **toughest** cases (Incomplete Echo, Cross Sensor) by **97.9**% and **76.4**% under the **hard** setting, significantly surpassing all baselines.



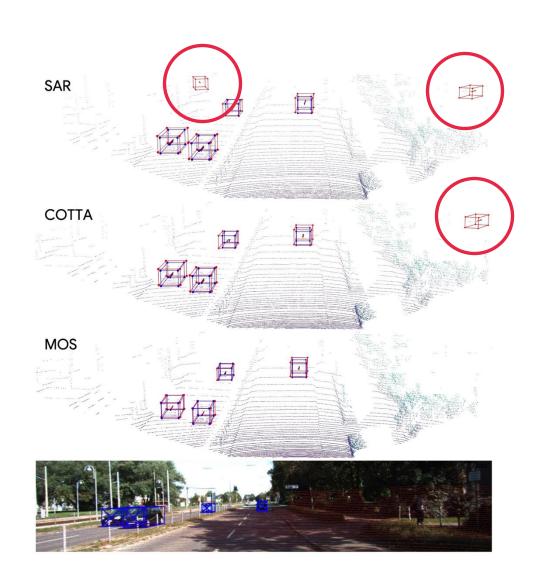
Experiments – Qualitative Results

Fewer False Positives

- Reduced misclassification of background as objects.

More Accurate Bounding Boxes

- Tighter alignment with ground truth.



Conclusion, Limitations & Future Directions

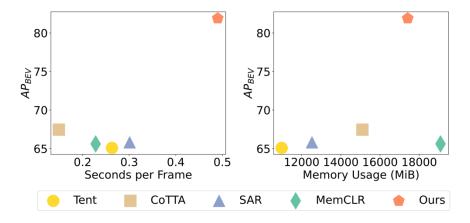
Contributions:

- Pioneered test-time adaptation for 3D detection.
- Mitigated three real-world shifts directly at deployment.

Limitations:

- Inferring multiple checkpoints can increase test-time latency (up to 0.4 s/frame).
- Loading/unloading models strains CPU/GPU memory.

Future Directions: explore partial weight storage or lightweight ensembles.



Thank You! ANY QUESTIONS?

Our poster session will be held on this afternoon (Friday, April 25 at 15:00).

We welcome further discussion and questions there!

Mr Zhuoxiao Chen | PhD Candidate School of Electrical Engineering and Computer Science (EECS) zhuoxiao.chen@uq.edu.au