

Improved Sampling Algorithms for Lévy-Itô Diffusion Models

Vadim Popov, Assel Yermekova, Tasnima Sadekova, Artem Khrapov, Mikhail Kudinov Huawei Noah's Ark Lab

ICLR Lévy-Itô Diffusion Models: overview

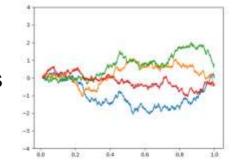
- One of known drawbacks of common diffusion models is their poor performance on underrepresented classes in the scenario when training dataset is highly imbalanced
- Recently, it has been proposed [1] to replace Gaussian noise in diffusion models with α–stable distribution with heavier tails to allow for better diversity and mode coverage in the mentioned scenario

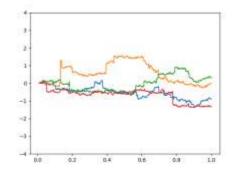
Lévy-Itô Diffusion Models: overview

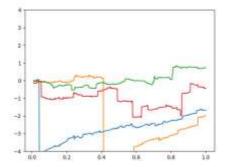
- One of known drawbacks of common diffusion models is their poor performance on underrepresented classes in the scenario when training dataset is highly imbalanced
- Recently, it has been proposed [1] to replace Gaussian noise in diffusion models with α–stable distribution with heavier tails to allow for better diversity and mode coverage in the mentioned scenario
- Forward SDE now relied on a certain Lévy process and the prior is standard α–stable random variable:

$$dX_t = \mu(X_{t-}, t)dt + \sigma_t dL_t^{\alpha}$$

 Difference between Wiener process and α–stable Lévy processes for different α:





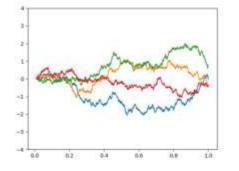


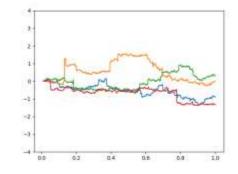
Lévy-Itô Diffusion Models: overview

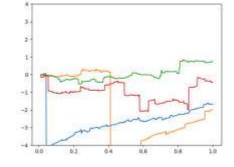
- One of known drawbacks of common diffusion models is their poor performance on underrepresented classes in the scenario when training dataset is highly imbalanced
- Recently, it has been proposed [1] to replace Gaussian noise in diffusion models with α-stable distribution
 with heavier tails to allow for better diversity and mode coverage in the mentioned scenario
- Forward SDE now relied on a certain Lévy process and the prior is standard α–stable random variable:

$$dX_t = \mu(X_{t-}, t)dt + \sigma_t dL_t^{\alpha}$$

- Difference between Wiener process and α–stable Lévy processes for different α:
 - Reverse SDE [1]:







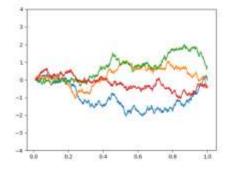
$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - \alpha \sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t d\bar{L}_t^{\alpha} + d\bar{Z}_t$$

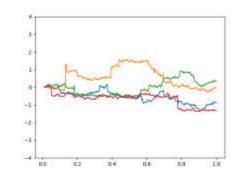
Lévy-Itô Diffusion Models: overview

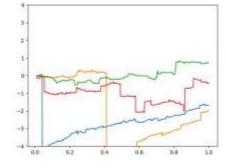
- One of known drawbacks of common diffusion models is their poor performance on underrepresented classes in the scenario when training dataset is highly imbalanced
- Recently, it has been proposed [1] to replace Gaussian noise in diffusion models with α–stable distribution with heavier tails to allow for better diversity and mode coverage in the mentioned scenario
- Forward SDE now relied on a certain Lévy process and the prior is standard α–stable random variable:

$$dX_t = \mu(X_{t-}, t)dt + \sigma_t dL_t^{\alpha}$$

 Difference between Wiener process and α-stable Lévy processes for different α:







- Reverse SDE [1]:
- The last term is usually skipped since it is a process of finite variation whose characteristic exponent is intractable:

$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - \alpha \sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t d\bar{L}_t^{\alpha} + d\bar{Z}_t$$

$$\int_0^t \sigma_L^{\alpha}(s) \left[\int_0^1 \int_{\mathbb{R}^d} \left(e^{i \langle \mathbf{u}, \mathbf{y} \rangle} - 1 - i \langle \mathbf{u}, \mathbf{y} \rangle \cdot 1_{||\mathbf{y}|| < 1}(\mathbf{y}) \right) \frac{\langle \mathbf{y}, \nabla p_s(\mathbf{x} + u\mathbf{y}) \rangle}{p_s(\mathbf{x})} \nu(d\mathbf{y}) du \right] ds.$$

We propose to use the following parametric family of reverse SDEs to sample from LIMs:

$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - (1 + \eta_t)\sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t \eta_t^{1/\alpha} d\bar{L}_t^{\alpha}$$

• We propose to use the following parametric family of reverse SDEs to sample from LIMs:

$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - (1 + \eta_t)\sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t \eta_t^{1/\alpha} d\bar{L}_t^{\alpha}$$

We prove that solutions of these SDEs have the same marginal densities as that of the forward SDE

• We propose to use the following parametric family of reverse SDEs to sample from LIMs:

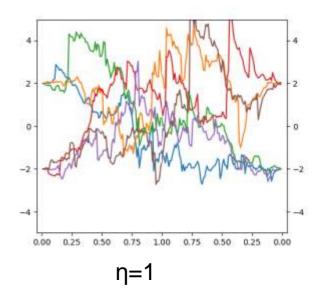
$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - (1 + \eta_t)\sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t \eta_t^{1/\alpha} d\bar{L}_t^{\alpha}$$

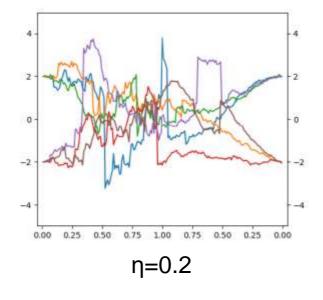
- We prove that solutions of these SDEs have the same marginal densities as that of the forward SDE
- These SDEs do not contain intractable terms, so allow for exact simulation

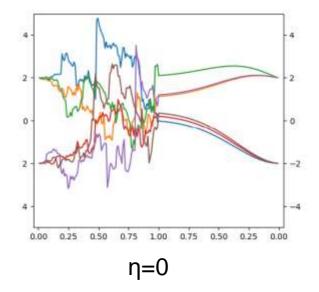
• We propose to use the following parametric family of reverse SDEs to sample from LIMs:

$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - (1 + \eta_t)\sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t \eta_t^{1/\alpha} d\bar{L}_t^{\alpha}$$

- We prove that solutions of these SDEs have the same marginal densities as that of the forward SDE
- These SDEs do not contain intractable terms, so allow for exact simulation
- Parameter η allows to control the amount of noise we want to add at inference



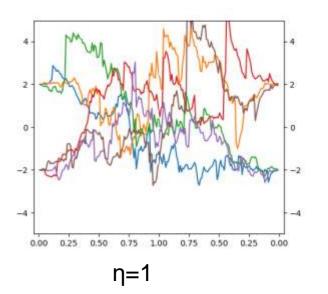


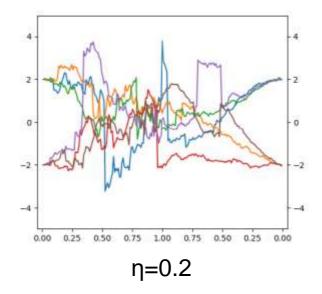


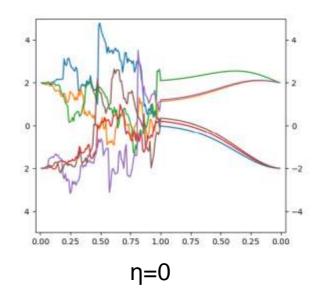
• We propose to use the following parametric family of reverse SDEs to sample from LIMs:

$$d\bar{X}_t = (\mu(\bar{X}_{t+}, t) - (1 + \eta_t)\sigma_t^{\alpha} S_t^{(\alpha)}(\bar{X}_{t+}))dt + \sigma_t \eta_t^{1/\alpha} d\bar{L}_t^{\alpha}$$

- We prove that solutions of these SDEs have the same marginal densities as that of the forward SDE
- These SDEs do not contain intractable terms, so allow for exact simulation
- Parameter η allows to control the amount of noise we want to add at inference







Parameter η has to be tuned at inference for optimal performance

Lévy-Itô Diffusion Models: results

• Unconditional image generation experiments on CIFAR10 demonstrate that for carefully chosen η we can obtain significant improvements in terms of FID compared to other known methods of sampling from LIMs:

	Euler-Maruyama		Exponential Integrator		
	N=20	N = 50	N=20	N=50	N = 500
SDE-A (LIM with $\alpha = 1.8$)	144.7	61.57	10.42	6.58	2.64
SDE-E (LIM with $\alpha = 1.8$)	8.79	4.14	6.86	4.87	3.36
ODE (LIM with $\alpha = 1.8$)	11.68	5.23	10.31	4.88	3.38
SDE-A (LIM with $\alpha = 1.5$)	109.5	22.68	9.05	4.25	2.72
SDE-E (LIM with $\alpha = 1.5$)	7.86	4.37	6.27	4.09	3.26
ODE (LIM with $\alpha = 1.5$)	9.95	5.94	10.50	5.14	3.35
SDE-A (LIM with $\alpha = 1.2$)	49.87	4.54	7.70	4.49	3.28
SDE-E (LIM with $\alpha = 1.2$)	7.08	4.22	7.08	4.26	3.74
ODE (LIM with $\alpha = 1.2$)	8.43	5.25	9.14	5.12	3.74

Lévy-Itô Diffusion Models: results

Unconditional image generation experiments on CIFAR10 demonstrate that for carefully chosen η we can
obtain significant improvements in terms of FID compared to other known methods of sampling from LIMs:

	Euler-Maruyama		Exponential Integrator		
	N=20	N = 50	N=20	N = 50	N = 500
SDE-A (LIM with $\alpha = 1.8$)	144.7	61.57	10.42	6.58	2.64
SDE-E (LIM with $\alpha = 1.8$)	8.79	4.14	6.86	4.87	3.36
ODE (LIM with $\alpha = 1.8$)	11.68	5.23	10.31	4.88	3.38
SDE-A (LIM with $\alpha = 1.5$)	109.5	22.68	9.05	4.25	2.72
SDE-E (LIM with $\alpha = 1.5$)	7.86	4.37	6.27	4.09	3.26
ODE (LIM with $\alpha = 1.5$)	9.95	5.94	10.50	5.14	3.35
SDE-A (LIM with $\alpha = 1.2$)	49.87	4.54	7.70	4.49	3.28
SDE-E (LIM with $\alpha = 1.2$)	7.08	4.22	7.08	4.26	3.74
ODE (LIM with $\alpha = 1.2$)	8.43	5.25	9.14	5.12	3.74

- Additionally we have experiments in image generation and text-to-speech synthesis in imbalanced setting
- More details can be found in the paper

Thank you for your attention!