

TSC-Net: Prediction of Pedestrian Trajectories by Trajectory-Scene-Cell Classification

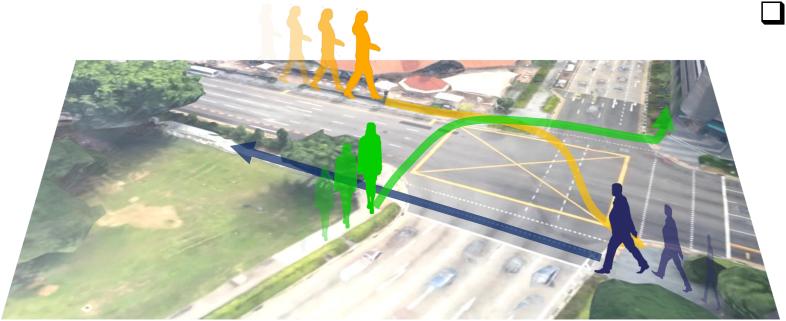
Bo Hu

Tat-Jen Cham

College of Computing and Data Science
Nanyang Technological University

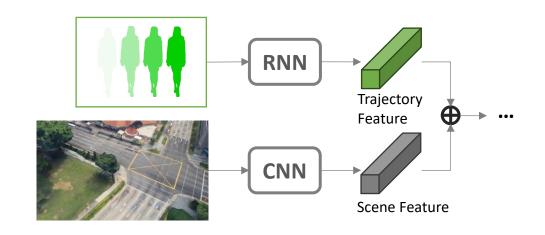
Trajectory Prediction

- Input: historical trajectories and scene map
- Output: future trajectories



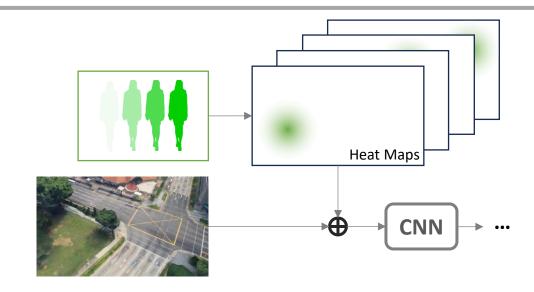
Related Works on Human-Scene Interaction

Scene Embedding



- Two feature types are not well aligned
- Difficult to align pedestrian coordinate and corresponding local scene

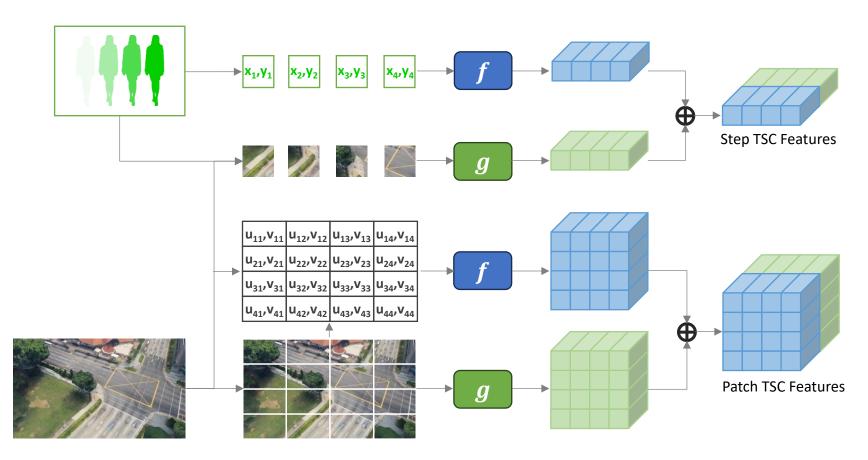
Trajectory Heat Map

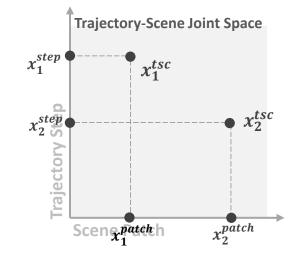


- Every pedestrian is represented by a 3D tensor
- Difficult to model human-human interactions

Trajectory-Scene-Cell Representation

- 1. Decouple both trajectory and scene in to cells
- 2. Build a *joint* feature space for trajectory and scene cells





f: Coordinate Embedding Network

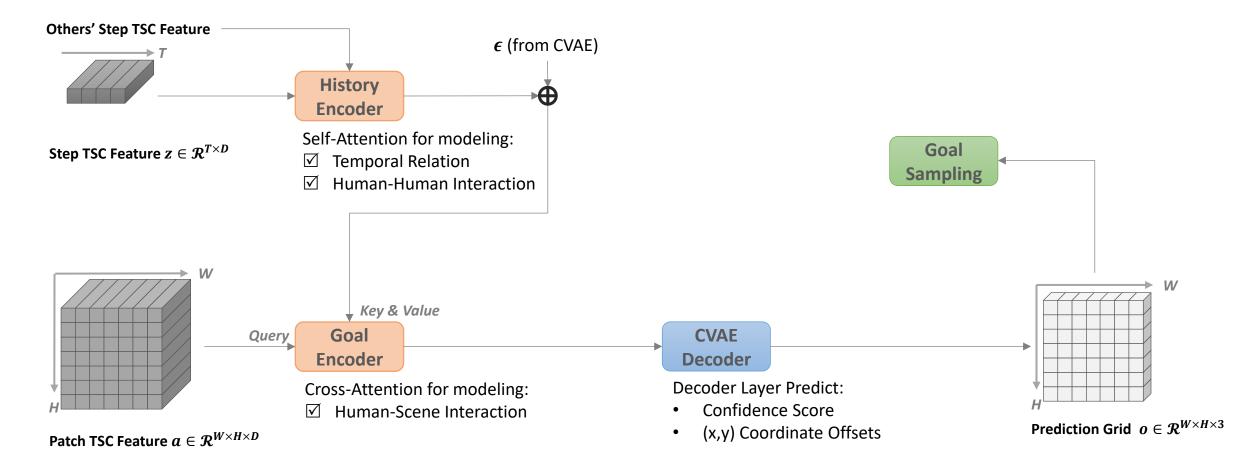
g: Scene Embedding Network

⊕: Concatenation

☑ Unify trajectory and scene features into one feature space

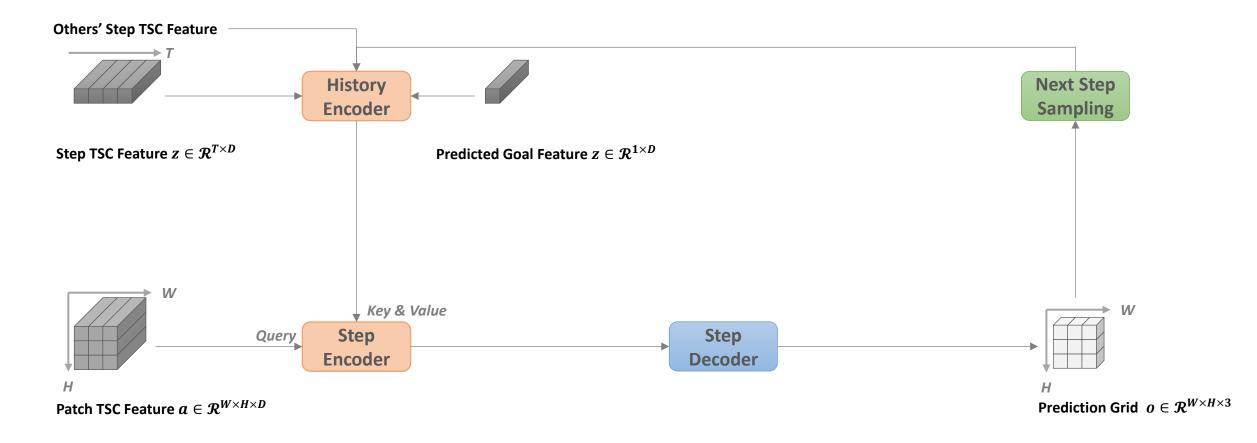
Prediction Framework – Goal Prediction

Predict goal by cell classification: which scene cell is the most probable location?



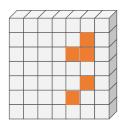
Prediction Framework – Next Step Prediction

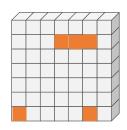
Predict <u>next step</u> by *cell classification*: which scene cell is the most probable?

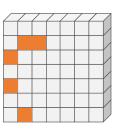


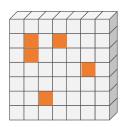
Prediction Framework – Hybrid Goal Sampling

- Two-Step Goal Sampling with CVAE:
 - Generate **m** goal output grid by CVAE
 - Pick n cells from each goal output grid with highest confidence score
- Hybrid Goal Sampling
 - Larger **m** performs better on short and smooth trajectories
 - Larger n performs better on long and non-smooth trajectories
 - Train a separate classifier, with historical trajectory as input, best (m,n) choice as output









(m, n) = (4,5), results in $m \times n$ goals.

Prediction Results (ADE/FDE)

Results with Short-Term Prediction Setting (8 frames observation, 12 frames prediction, 2.5 fps)

Methods	ETH	HOTEL	UNIV	ZARA1	ZARA2	Average	SDD
Y-Net* Mangalam et al. (2021)	0.28/0.33	0.10/0.14	0.24/0.41	0.17/0.27	0.13/0.22	0.18/0.27	7.85 /11.85
NSP-SFM* Yue et al. (2022)	0.25/0.24	0.09/0.13	0.21/0.38	0.16/0.27	0.12/0.20	0.17/0.24	6.52 /10.61
MID Gu et al. (2022)	0.39/0.66	0.13/0.22	0.22/0.45	<u>0.17</u> /0.30	0.13/0.27	0.21/0.38	7.61 /14.30
PCCSNET Sun et al. (2021)	0.28/0.54	0.11 /0.19	0.29/0.60	0.21/0.44	0.15/0.34	0.21/0.42	8.62 /16.16
MID Gu et al. (2022)	0.39/0.66	0.13/0.22	0.22/0.45	<u>0.17</u> /0.30	<u>0.13</u> /0.27	0.21/0.38	7.61 /14.30
FlowChain Maeda & Ukita (2023)	0.55/0.99	0.20/0.35	0.29/0.54	0.22/0.40	0.20/0.34	0.29/0.52	9.93/17.17
SICNet Dong et al. (2023)	0.27/0.45	0.11 /0.16	0.26/0.46	0.19/0.33	<u>0.13</u> /0.26	0.19/0.33	8.44/13.65
TUTR Shi et al. (2023)	0.40/0.61	0.11 /0.18	0.23/0.42	0.18/0.34	<u>0.13</u> /0.25	0.21/0.36	7.76/12.69
V^2 -Net Wong et al. (2022)	0.23/0.37	0.11 /0.16	0.21/0.35	0.19/0.30	0.14/0.24	0.18/0.28	7.12/11.39
LMTraj-SUP Bae et al. (2024)	0.41/0.51	<u>0.12</u> /0.16	0.22/0.34	0.20/0.32	0.17/0.27	0.22/0.32	7.80/ <u>10.10</u>
E-V ² -Net-SC Wong et al. (2024)	<u>0.25</u> /0.38	<u>0.12</u> / 0.14	0.20/0.34	0.18/ 0.29	<u>0.13</u> / 0.22	0.17/0.27	<u>6.54</u> /10.36
TSC-Net (Ours)	0.32/0.39	<u>0.12</u> /0.19	0.25/0.46	<u>0.17</u> /0.30	0.15/0.26	0.20/0.32	6.44/9.97

Results with Long-Term Prediction Setting (5 frames observation, 30 frames prediction, 1 fps)

Methods	Social-GAN† Gupta et al. (2018)	PECNet† Mangalam et al. (2020)	R-PECNet†	Y-Net* Mangalam et al. (2021)	E-V ² -Net-SC ‡ Wong et al. (2024)	TSC-Net (Ours)
SDD	155.32/307.88	72.22/118.13	261.27/750.42	47.94 /66.71	52.16/69.85	51.39/ 63.97
InD	38.57/84.61	20.25/32.95	341.8/1702.64	14.99 /21.13	16.23/23.56	17.15/ 19.53

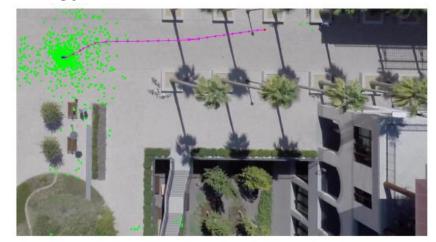
Prediction Results – Irregular Speed

- Compute velocity difference $V_{diff} = |\frac{\sum_{t=1}^{\tau} v_t}{\tau} \frac{\sum_{t=\tau+1}^{T} v_t}{T-\tau}|$ for each trajectory sample
- Evaluate the trajectories with top x% largest velocity difference

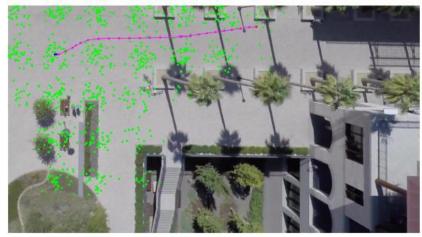
Results with Long-Term Prediction Setting (5 frames observation, 30 frames prediction, 1 fps)

Top (%) Samples with Largest V_{diff}	50%	40%	30%	20%	10%
Y-Net Mangalam et al. (2021)	61.82 / 89.69	66.98 / 98.17	74.93 / 109.49	85.56 / 127.88	100.10 / 162.50
TSC-Net (Ours)	66.16 / 82.84	66.07 / 83.50	72.10 / 85.54	81.29 / 94.23	85.41 / 101.86

Y-Net



Ours



HistoryGround Truth FutureSampled Goals

 \square Our method is good at predicting goals for sudden change of velocity.

Thanks