

Fine-tuning can Help Detect Pretraining Data from Large Language Models

Hengxiang Zhang Songxin Zhang Bingyi Jing Hongxin Wei

ICLR 2025

Pretraining Data Detection

Pretraining data detection can be formulated as a binary classification: determining whether a given text x is a member or non-member of the pretraining dataset. A level-set estimation can perform pretraining data detection:

$$h(\boldsymbol{x}; f_{\boldsymbol{\theta}}) = \begin{cases} \text{member} & \text{if } \mathcal{S}(\boldsymbol{x}; f_{\boldsymbol{\theta}}) < \epsilon, \\ \text{non-member} & \text{if } \mathcal{S}(\boldsymbol{x}; f_{\boldsymbol{\theta}}) \ge \epsilon, \end{cases}$$

where $S(x; f_{\theta})$ denotes a scoring function, and ϵ is the threshold determined by a validation dataset.

Scoring Functions

Perplexity is proposed to distinguish members and non-members, based on the observation that members tend to have lower perplexity than non-members. The perplexity of x is calculated as:

Perplexity
$$(\boldsymbol{x}; f_{\boldsymbol{\theta}}) = \exp\{-\frac{1}{n} \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(x_i \mid x_1, \dots, x_{i-1})\}$$

where $x = \{x_1, x_2, ..., x_n\}$ is a sequence of tokens and p_{θ} , $(x_i \mid x_1, ..., x_{i-1})$ is the conditional probability of x_i given the preceding tokens.

Scoring Functions

Min-k% computes the average probabilities of k% outlier tokens with the smallest predicted probability. The intuition is that a nonmember example is more likely to include a few outlier words with low likelihoods than members. Min-k% is computed by:

$$\operatorname{\mathsf{Min-k}\%}(\boldsymbol{x}; f_{\boldsymbol{\theta}}) = \frac{1}{E} \sum_{x_i \in \operatorname{\mathsf{Min-k}\%}(\boldsymbol{x})} \log p_{\boldsymbol{\theta}}(x_i \mid x_1, \dots, x_{i-1})$$

where E is the size of the Min-k%(x) set.

Unsatisfactory Performance

- Non-member data can obtain low perplexities by including frequent or repetitive texts, while members may contain rare tokens that result in high perplexities.
- The significant overlap in scores distribution between members and non-members makes it hard to distinguish between them.

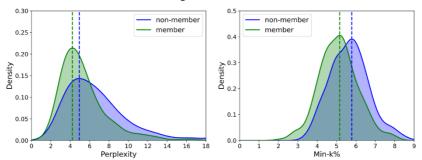


Figure: The scores distribution of perplexity and Min-k% from the pre-trained model.

Motivation: Fine-tuning with Nonmembers

- Unseen data in the pretraining tend to obtain a lower perplexity from the finetuned model than the pre-trained model.
- The shift in perplexity distribution for members is negligible after fine-tuning.

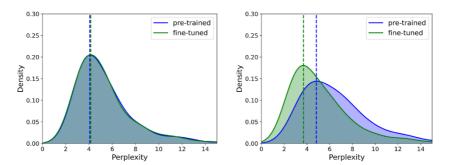


Figure: The perplexity distribution from the pre-trained model and the fine-tuned model.

Method: Fine-tuned Score Deviation (FSD)

Fine-tuned Score Deviation is proposed to exploit the score deviation for detecting pretraining data. Given a sample x, we calculate the score difference between the pretrained LLM f_{θ} and the fine-tuned LLM $f_{\theta'}$. The new score is formulated as:

$$FSD(\boldsymbol{x}; f_{\boldsymbol{\theta}}, f_{\boldsymbol{\theta'}}) = \mathcal{S}(\boldsymbol{x}; f_{\boldsymbol{\theta}}) - \mathcal{S}(\boldsymbol{x}; f_{\boldsymbol{\theta'}})$$

where θ' denotes the parameters of LLM after fine-tuning, and $S(\cdot)$ denotes an existing scoring function, such as Perplexity and Min-k%.

Procedure of Our Method

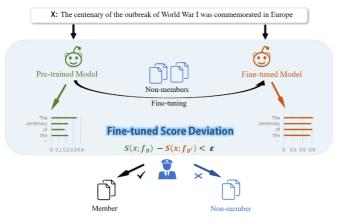
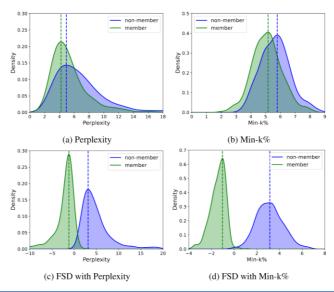


Figure: Overview of Fine-tuned Score Deviation.

- Collect a small amount of unseen data for the LLM within the same domain.
- II. Perform fine-tuning on LLMs with the constructed fine-tuning dataset.
- III. Calculate the score difference between the pre-trained and fine-tuned LLM.

Clear Distinction with FSD



Results on WikiMIA and ArXivTection

Table: AUC score for pretraining data detection with baselines and our method from various models.

Dataset	Method	GPT-J-6B		OPT-6.7B		Pythia-6.9B		LLaMA-7B		NeoX-20B	
		Base	+Ours	Base	+Ours	Base	+Ours	Base	+Ours	Base	+Ours
WikiMIA	Perplexity	0.64	0.95	0.60	0.90	0.64	0.90	0.64	0.92	0.69	0.93
	Lowercase	0.59	0.77	0.59	0.71	0.58	0.74	0.58	0.69	0.66	0.76
	Zlib	0.61	0.94	0.59	0.89	0.61	0.88	0.62	0.90	0.64	0.93
	MIN-K $\%$	0.68	0.92	0.62	0.91	0.67	0.86	0.65	0.85	0.73	0.90
ArXivTection	Perplexity	0.79	0.96	0.68	0.89	0.77	0.95	0.68	0.92	0.79	0.95
	Lowercase	0.59	0.81	0.58	0.70	0.60	0.77	0.50	0.69	0.62	0.75
	Zlib	0.64	0.96	0.55	0.89	0.63	0.95	0.57	0.91	0.65	0.95
	MIN-K%	0.85	0.92	0.74	0.84	0.84	0.91	0.76	0.86	0.85	0.91

FSD significantly improves the performance of all baselines across diverse models.

Results on the Pile Dataset

Table: The average AUC score of baselines and our method from the Pythia-6.9B over 20 subsets of the Pile dataset.

Method	Perplexity		Lowercase		Zlib		MIN-K%	
	Base	+Ours	Base	+Ours	Base	+Ours	Base	+Ours
Pile	0.503	0.625	0.519	0.566	0.507	0.624	0.515	0.600

Our FSD improves the performance of baselines on the Pile dataset under the Pythia-6.9B model.

Results on Varying the Fine-tuning Data Size

Our FSD can improve the performance of baselines with a few non-members, demonstrating its practicality.

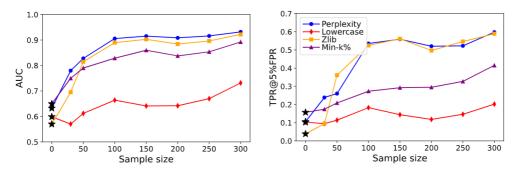


Figure: AUC and TPR@5%FPR of FSD, using auxiliary datasets with varying sizes.

Results on Copyrighted Book Detection

Table: Accuracy and AUC score for copyrighted book detection.

Metric		Accı	ıracy		AUC					
Method	BookTection		BookMIA		BookTection		BookMIA			
	Base	+Ours	Base	+Ours	Base	+Ours	Base	+Ours		
Perplexity	66.9	85.4	59.0	96.5	0.710	0.910	0.564	0.995		
Lowercase	64.5	73.0	67.0	69.2	0.664	0.770	0.708	0.779		
Zlib	65.3	86.4	57.4	98.6	0.568	0.920	0.474	0.999		
MIN-K%	68.1	82.1	59.5	93.9	0.716	0.880	0.587	0.979		

Our FSD significantly improves the accuracy of baseline methods for copyrighted book detection.

Ablation Study

Table: AUC and TPR@5%FPR of FSD with different fine-tuning methods.

Metric		AUC	7		TPR@5%FPR				
Method	Base	AdaLoRA	IA3	LoRA	Base	AdaLoRA	IA3	LoRA	
Perplexity	0.64	0.82	0.91	0.92	0.09	0.39	0.52	0.41	
Lowercase	0.58	0.62	0.72	0.69	0.10	0.13	0.17	0.18	
Zlib	0.62	0.76	0.84	0.90	0.09	0.24	0.32	0.47	
MIN-K%	0.65	0.80	0.90	0.85	0.15	0.22	0.39	0.25	

Our FSD can be implemented with different fine-tuning methods and does not require a specific finetuning technique.

Conclusion

- Challenge: Unseen data can obtain high likelihood by including frequent or repetitive texts, while seen data may contain rare tokens that result in low likelihood, which casts a challenge for detecting pretraining data.
- Motivation: Compared to non-member data, member data experience a greater perplexity shift after fine-tuning with a few non-members.
- **Method:** Fine-tuned Score Deviation (FSD) is proposed to measure the deviation distance of current scores after fine-tuning on a small amount of unseen data within the same domain.

Paper: https://openreview.net/pdf?id=X8dzvdkQwO

Code: https://github.com/ml-stat-Sustech/Fine-tuned-Score-Deviation